Design Manual

CMOS-N5 Series

CMOS Gate Array

Ver. 7.0

[MEMO]

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIн (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and Vін (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

[^0]These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of February, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Duesseldorf, Germany
Tel: 0211-65030

- Sucursal en España Madrid, Spain
Tel: 091-504 2787
- Succursale Française Vélizy-Villacoublay, France
Tel: 01-30-675800
- Filiale Italiana Milano, Italy
Tel: 02-66 7541
- Branch The Netherlands

Eindhoven, The Netherlands
Tel: 040-2445845

- Tyskland Filial

Taeby, Sweden
Tel: 08-63 80820

- United Kingdom Branch

Milton Keynes, UK
Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737
NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

Major Revisions in This Edition

Page	Description
Throughout	- Addition of masters (μ PD65891, 65892, 65894) - Transfer of figures and tables in data lists from APPENDIX K DATA to main text and deletion of APPENDIX K DATA
p. 21	Modification of Table 1-1 Products
p. 26	Modification of 2.1.1 Cell utilization rate, usable cell and pin-pair count limits
p. 28	Modification of Table 2-2 Usable Gates and Pin-Pair Count
p. 46	Addition of (3) Mountability based on power supply voltage in 2.1.4 Notes on mounting largescale macros (memory)
6th edition pp.48, 49	Deletion of 2.2 Package Selection
p. 50	Modification of Flow 1: Development procedure and interfacing in 2.5 Development Flow
p. 53	Modification of table in 2.6 OPENCAD Configuration Tools
pp.55, 56	Modification of table in 2.7 List of Interface Data
pp. 57 to 97	Modification of 2.8 ASIC Product Development Information
p. 101	Modification of Table 3-5 Recommended Operating Range ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)
p. 107	Modification of Table 3-11 Recommended Operating Range ($\mathrm{V}_{\mathrm{DD}}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)
pp.112, 114	Modification of 4.1.1 Estimating static current consumption
p. 121	Modification of Figure 4-12 Oscillator Configuration Diagram
p. 126	Modification of 4.3.4 Compensation method
pp. 132 to 135	Modification of 4.4.4 Fluctuation in propagation delay time
p. 138	Modification of Table 4-9 Recommended Load Capacitance Ranges of Output Buffers (@3.3 V)
p. 139	Modification of (a) lol $=3.0 \mathrm{~mA}$ (@3.3 V) in Figure 4-15 fmax. vs. CL Limit (CMOS Level Output)
p. 141	Modification of (a) loL = 3.0 mA (@3.3 V) in Figure 4-16 fmax. vs. CL Limit (CMOS Level Low-Noise Output)
pp.147, 148	Modification of description in Figure 4-20 lo vs. Vo (@3.3 V)
p. 153	Modification of description in 4.6.4 Simultaneous operation pins to be checked
p. 154	Modification of calculation example in 4.6.6 Three-GND-pin determination
pp.173, 174	Addition of Caution in 5.4.3 Clock tree synthesis
p. 206	Modification of description in 6.2.3 Number of test patterns
p. 215	Modification of description in 6.5 Test Pattern for On-Chip RAM
p. 229	Addition of 7.3.3 Using oscillator (resonator) and CTS together
pp.230, 231	Addition of descriptions in 7.3.4 Notes on configuring an oscillator
p. 231	Addition of Figure 7-6 Example of Overtone Circuits
pp.233, 234	Modification of Table 7-3 List of Resonator Evaluations
p. 244	Modification of 7.6.3 Checking connection of RAM test circuit
p. 252	Modification of description in C.2 (4) Example
pp. 261 to 287	Modification of APPENDIX E LIST OF BLOCKS
6th edition pp. 261 to 270	Deletion of APPENDIX F PIN DESCRIPTIONS
6th edition pp. 271 to 274	Deletion of APPENDIX G PINS ASSIGNABLE TO OSCILLATOR
6th edition pp. 275 to 285	Deletion of APPENDIX H PACKAGE DRAWINGS
6th edition pp. 286 to 288	Deletion of APPENDIX I PACKAGE MARKINGS
6th edition pp. 289 to 290	Deletion of APPENDIX J RECOMMENDED SOLDERING CONDITIONS

The mark \star shows major revised points.

INTRODUCTION

This manual explains the restrictions and points to be noted when designing LSIs using NEC Electronics' CMOSN5 Series of high-speed, high-density CMOS gate arrays.

In order to ensure smooth design of an LSI, read this manual carefully.
Be sure to follow the specifications described in this manual (including general information, cautions, and restrictions).
Failure to do so may result in poor quality, poor performance, or operational faults in LSI products.

The following abbreviations are used for the package names in this manual.

Abbreviation	
QFP	Plastic QFP
PBGA	Plastic BGA
TBGA	Tape BGA
FPBGA $^{\mathrm{TM}}$	Fine pitch plastic BGA

Regarding the Order of Masters

Each of the information is described in gate size order, not in master order.

Target Readers This manual is intended for user engineers who wish to design an LSI using the CMOSN5 Series.

Purpose
This manual explains general information, limitations, and points to be noted when designing an LSI using the CMOS-N5 Series.

How to Read This Manual It is assumed that the reader of this manual has general knowledge in the fields of electrical engineering, logic circuits, and microcomputers.

- To understand the overall functions of the CMOS-N5 Series:
\rightarrow Read this manual in the order of the contents.

See CMOS Gate Array, Embedded Array Package Design Manual (A16400E) for the following items.

- List of packages
- Maximum allowable power consumption
- Thermal resistance
- Assignment of Vdd, GND, NC, SCAN test pins
- Pins that can be used for oscillators
- Package drawings
- Package markings
- Mounting rank (Recommended soldering conditions)

Conventions
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- CMOS-N5 Series Design Manual
(This manual)
- CMOS-N5 Series (5.0 V) Block Library (A13872E)
- CMOS-N5 Series (3.3 V) Block Library
(A15895E)
- CMOS-N5 Series Memory Block Library
(A14683E)
- CMOS-N5 Series Mega Macro Design Manual
(A14759E)
- CMOS Gate Array, Embedded Array Package Design Manual
(A16400E)
- NEC SYSTEM LSI DESIGN OPENCAD™ OPC_VSHELL User's Manual
(A16306E)
- NEC SYSTEM LSI DESIGN Design For Test TESTACT, NEC_SCAN2 User's Manual
(A16437E)
- NEC SYSTEM LSI DESIGN Design For Test NEC_BIST, NEC_TESTBUS, NEC_SCAN/SCAN2, NEC_BSCAN/BSCAN2 User's Manual
- SEMICONDUCTOR SELECTION GUIDE -Products and Packages- (X13769X)

[^1]
CONTENTS

CHAPTER 1 OVERVIEW 19
1.1 Features 19
1.2 CMOS-N5 Series Products 21
1.3 Internal Structure of CMOS-N5 Series 22
1.4 Internal Cell Structure 23
1.5 QFP Package 24
CHAPTER 2 IMPLEMENTING THE SYSTEM USING THE GATE ARRAY 25
2.1 Estimating Circuit Scale 26
2.1.1 Cell utilization rate, usable cell and pin-pair count limits 26
2.1.2 Notes on estimating number of cells used 29
2.1.3 Large-scale macro mounting 29
2.1.4 Notes on mounting large-scale macros (memory) 46
2.2 Verifying Power Consumption 46
2.3 Pin Placement 47
2.3.1 Notes on pin layout 47
2.4 I/O Interface 48
2.4.1 Input blocks 48
2.4.2 Output blocks 49
2.5 Development Flow 50
2.6 OPENCAD Configuration Tools 53
2.7 List of Interface Data 55
2.8 ASIC Product Development Information 57
2.8.1 ASIC product development information (checksheet) 58
2.8.2 RAM block 74
2.8.3 ROM 78
2.8.4 High-speed function test 80
2.8.5 GTL, PECL, HSTL, PCI, LVDS block 82
2.8.6 DPLL block 84
2.8.7 Megamacro 88
2.8.8 Alternate use as scan path and boundary scan 90
2.8.9 Scan path 92
2.8.10 Boundary scan 96
CHAPTER 3 PRODUCT SPECIFICATIONS 98
3.1 Terminology 98
3.2 Absolute Maximum Ratings 100
3.3 Standard Specification of CMOS Interface Conditions (VDD $=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 101
3.3.1 Recommended operating range 101
3.3.2 DC characteristics 102
3.3.3 AC characteristics 103
3.4 Specification $1\left(\mathrm{VDD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ 104
3.4.1 Recommended operating range 104
3.4.2 DC characteristics 105
3.4.3 AC characteristics 106
3.5 Specification $2\left(\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$) 107
3.5.1 Recommended operating range 107
3.5.2 DC characteristics 108
3.5.3 AC characteristics 109
3.6 Pin Capacitance 109
CHAPTER 4 ESTIMATING ELECTRICAL CHARACTERISTICS 111
4.1 Estimating Static Current Consumption 111
4.1.1 Estimating static current consumption 111
4.2 Input Through Current 114
4.3 Power Consumption 117
4.3.1 Causes of power consumption 117
4.3.2 Estimating power consumption 118
4.3.3 Unit power consumption of memory 124
4.3.4 Compensation method 126
4.3.5 Determining power consumption 127
4.4 Propagation Delay Time 128
4.4.1 Accuracy of propagation delay time 128
4.4.2 Calculation in propagation delay time 129
4.4.3 Estimating wiring capacitance 131
4.4.4 Fluctuation in propagation delay time 132
4.5 Output Buffer Characteristics 136
4.5.1 Output buffer rise and fall times 136
4.5.2 Recommended load capacitance range of output buffers 138
4.5.3 Maximum operating frequency of output buffers 139
4.5.4 Output buffer output current (loL, loh) 143
4.6 Restrictions to Simultaneous Operation of Output Buffers 149
4.6.1 Malfunction due to simultaneous operation of outputs 149
4.6.2 Definitions 151
4.6.3 Factors for the determination of simultaneous operation 151
4.6.4 Simultaneous operation pins to be checked 152
4.6.5 Pin placement and simultaneous operation 153
4.6.6 Three-GND-pin determination 154
4.6.7 Assumptions for the determination method 157
4.6.8 Other determination methods 158
CHAPTER 5 CIRCUIT DESIGN GUIDELINES 159
5.1 Basic Circuit Configuration 159
5.1.1 Using I/O buffers 159
5.1.2 Unused pins 160
5.1.3 Fan-out limitations 160
5.1.4 Wired logic circuit prohibitions 160
5.1.5 Notes on using bidirectional buffers 161
5.2 Differential Circuit Prohibition 162
5.3 RS Latch and Loop Circuits 163
5.3.1 RS latch 163
5.3.2 Loop circuit 164
5.3.3 Prohibited state of flip-flops 165
5.4 Clocked Signal Design 166
5.4.1 Synchronous circuit design 166
5.4.2 Clock skew 171
5.4.3 Clock tree synthesis 173
5.5 Notes on Configuring High-Speed Circuits 178
5.6 Delay Time Margin 179
5.6.1 Timing definitions 180
5.6.2 Delay time margin calculation (asynchronous circuits) 181
5.6.3 Delay time margin calculation (high-speed circuits) 182
5.6.4 Minimum pulse width 185
5.6.5 Metastable state (preliminary) 186
5.6.6 Critical paths 190
5.6.7 Ensuring operating margin 193
5.7 Internal Bus Configuration 194
5.7.1 Configuring internal bus 194
5.7.2 Preventing internal bus floating 194
5.7.3 Precautions when using internal bus 195
5.8 Preventing Contention with External Bus 196
5.9 Testability 197
5.9.1 Flip-flop initial setting 197
5.9.2 Counter division 197
5.9.3 Adding test pins and dividing circuits 198
5.10 Racing and Spike Noise 199
5.10.1 Racing (contention) 199
5.10.2 Spike noise 201
CHAPTER 6 TEST PATTERN GENERATION 204
6.1 Test Pattern Types 204
6.2 Notes from Viewpoint of Product Test (LSI Tester) 205
6.2.1 I/O pin naming conventions 205
6.2.2 Limitations on test pattern length 205
6.2.3 Number of test patterns 206
6.3 Notes on Creating Test Pattern for Function Test 206
6.3.1 Initializing circuit 206
6.3.2 Test cycle (test rate) 206
6.3.3 Output determination time (strobe time) 206
6.3.4 Specification of timing phase 207
6.3.5 Skew 209
6.3.6 Notes on switching I/O mode of bidirectional pin 209
6.3.7 I/O modulation function 211
6.3.8 I/O conflict 213
6.3.9 Testing multifunction I/O circuits 213
6.4 Notes on Creating DC Test Patterns 214
6.5 Test Pattern for On-Chip RAM 215
6.6 High-Speed Function Test (Real-Time Test) 216
6.6.1 Limitation of the test pattern length 216
6.6.2 Test cycle (test rate) 216
6.6.3 Output determination time (strobe time) 216
6.6.4 Notes on high-speed function testing 217
6.7 Testability (Fault Coverage) 219
6.7.1 Consideration of testability (fault coverage) 219
6.7.2 Principle of fault simulation 219
6.8 Consideration of System Simulation 222
CHAPTER 7 MULTIFUNCTION BLOCKS 223
7.1 Buffer with Fail-Safe Function 224
7.2 Input/Output/Bidirectional Buffers with On-Chip Pull-Up/Pull-Down Resistors 225
7.3 Oscillator 226
7.3.1 Configuration of oscillator 226
7.3.2 Description of oscillator 227

* \quad 7.3.3 Using oscillator (resonator) and CTS together 229
7.3.4 Notes on configuring an oscillator 230
7.3.5 Constants of external circuit 232
7.4 Memory 235
7.4.1 Types of memory blocks 235
7.4.2 RAM blocks 236
7.5 Writing Memory Blocks 238
7.5.1 Selecting memory blocks 238
7.5.2 Using memory blocks 238
7.6 Memory Test 239
7.6.1 RAM test 239
7.6.2 Assigning test I/O pins (TIN, TEB, and TOUT) 242
7.6.3 Checking connection of RAM test circuit 244
7.7 Scan Path Test Block 245
APPENDIX A POWER CONSUMPTION (PRELIMINARY) 246
APPENDIX B PROPAGATION DELAY TIME 248
APPENDIX C ALBATROSS AND DIF FILE FORMATS 249
C. 1 ALBATROSS File Format (Circuit Name.alb) 249
C. 2 DIF File Format (Circuit Name.dif) 251
APPENDIX D DRAWING CIRCUIT DIAGRAMS AND TIMING CHARTS 253
D. 1 Drawing Circuit Diagrams 253
D.1.1 Logic symbols 253
D.1.2 Block names (function names) 253
D.1.3 Pin names (I/O pin name of block) 253
D.1.4 Gate names (specific name of each block) 253
D.1.5 I/O pin names 254
D. 2 Handling Macros 257
D. 3 Preparing Timing Charts 259
APPENDIX E LIST OF BLOCKS 261
E. 1 Interface Block 261
E.1.1 CMOS Level 261
E.1.2 TTL Level 268
E.1.3 Oscillator 273
E. 2 Function Block 274
E.2.1 Level Generator 274
E.2.2 Inverter, Buffer, CTS Driver, Delay Gate 274
E.2.3 OR(NOR) 275
E.2.4 AND(NAND) 276
E.2.5 AND-NOR 277
E.2.6 OR-NAND 278
E.2.7 Exclusive OR, Exclusive NOR 279
E.2.8 Adder, 3-State Buffer, Decoder, Multiplexer, Generator 280
E.2.9 RS-Latch, RS-F/F 281
E.2.10 D-Latch 281
E.2.11 D-F/F 282
E.2.12 T-F/F, JK-F/F 284
E. 3 Scan Path Block 285
E.3.1 Standard Type 285
E.3.2 NEC Scan 285
E.3.3 Scan Controller 286
E. 4 Boundary Scan Block 287
E.4.1 TAP Macro 287
E.4.2 Level Generator 287
E.4.3 Data Register 287
E.4.4 D-latch, Selector, Shift Register 287
E.4.5 Soft Macro 287

LIST OF FIGURES (1/3)

Figure No.TitlePage
1-1 Gate Array Configuration 22
1-2 Internal Cell Equivalent Circuit 23
1-3 Equivalent Circuits 24
1-4 Cross-Section of QFP Package 24
2-1 Pin-Pair Count 26
2-2 Shape of Cell Range Occupied by Macros (with 4 Basic Macros) 34
2-3 Cell Range Occupied by Macro 35
2-4 Area Where Macros Cannot Be Implemented 36
2-5 Allowable Power Consumption vs. QFP Type 46
4-1 Leakage Current 112
4-2 Current Consumption of On-Chip $50 \mathrm{k} \Omega$ Resistor (IPD) 113
4-3 Current Consumption of On-Chip $5 \mathrm{k} \Omega$ Resistor (IPu) 113
4-4 Input Through Current (Vdd = 5.0 V CMOS Level) 115
4-5 Input Through Current (VDD = 5.0 V TTL Level) 115
4-6 Input Through Current (VDD = 5.5 V CMOS Level Schmitt) 115
4-7 Input Through Current (VDD = 5.5 V TTL Level Schmitt) 115
4-8 Input Through Current (Vdd = 3.6 V CMOS Level) 116
4-9 Input Through Current (Vdd = 3.3 V TTL Level) 116
4-10 Input Through Current (VDD = 3.6 V CMOS Level Schmitt) 116
4-11 Input Through Current (Vdd = 3.3 V TTL Level Schmitt) 116
4-12 Oscillator Configuration Diagram 121
4-13 Propagation Delay Time 134
4-14 tpD Variation 135
4-15 fmax. vs. Cl Limit (CMOS Level Output) 139
4-16 fmax. vs. Cl Limit (CMOS Level Low-Noise Output) 141
4-17 Vdd Dependency of lol / Іон 143
4-18 TA Dependency of loL / loн 144
4-19 lo vs. Vo (@5.0 V) 145
4-20 lo vs. Vo (@3.3 V) 147
4-21 Malfunction Caused by Simultaneous Operation 150
5-1 Basic Circuit Configuration 159
5-2 Wired Logic Circuit Prohibitions 160
5-3 Ringing 161
5-4 Example of Preventive Circuit 161
5-5 Differential Circuit Prohibition 162
5-6 Asynchronous RS Latches 163
5-7 Loop Circuit 164
5-8 Clock Skew 167
5-9 Clock Skew Countermeasure 1 168
5-10 Clock Skew Countermeasure 2 169

LIST OF FIGURES (2/3)

Figure No. Title Page
5-11 Double-Phase Synchronous Circuit 170
5-12 Countermeasures for Clock Lines Between Macros 172
5-13 Concept of CTS 173
5-14 Image of CTS Use (Example of FC44) 175
5-15 Clock Skew Optimization 176
5-16 Example of CTS Block Description 177
5-17 Configuring High-Speed Operational (Stable) Circuits 178
5-18 Setup Time 180
5-19 Hold Time 180
5-20 Release Time 180
5-21 Removal Time 180
5-22 Minimum Pulse Width 180
5-23 Example of Delay Time Margin Calculation Circuit 181
5-24 Timing Estimate 181
5-25 Example of In-Phase Clock Circuit 182
5-26 In-Phase Clock Timing 182
5-27 Example of Inverse-Phase Clock Circuit 184
5-28 Inverse-Phase Clock Timing 184
5-29 Minimum Pulse Width Estimate 185
5-30 Pulse Narrowing 185
5-31 System with Critical Paths 190
5-32 Example of Input-Input Critical Path 192
5-33 Verification of Setup Time 192
5-34 Bus Configuration 194
5-35 Examples of Internal Bus Floating Prevention Circuit 194
5-36 External Bus Floating Prevention Countermeasure 196
5-37 Flip-Flop Initial Setting 197
5-38 Counter Division 197
5-39 Racing 200
5-40 Example of Data Selector Circuit 201
5-41 Example of Test Patterns (Before Improvement) 202
5-42 Example of Test Patterns (After Improvement) 203
6-1 Timing Phase 208
6-2 Example of Incorrect Bidirectional Pin Switch Timing 209
6-3 Contention During Input/Output Switching 210
6-4 Test Pattern Example 215
6-5 Strobe Time 216
6-6 Real-Time Simulation Results 218
6-7 Concept of Fault Simulation 220
6-8 Creating Test Patterns by System Simulation 222
7-1 Equivalent Circuit Diagram for Buffer with Fail-Safe Function 224

LIST OF FIGURES (3/3)

Figure No. Title Page
7-2 Example of Oscillator Configuration 226
7-3 Oscillator Configuration 227
7-4 Example of Recommended Circuit Configuration. 229
7-5 Example of GND Pattern on Board 230
7-6 Example of Overtone Circuits 231
7-7 Oscillator Configuration Diagram 234
7-8 Single-Port RAM Circuit Configuration 236
7-9 Dual-Port RAM Circuit Configuration 237
7-10 Test Circuit (BIST) Block Diagram 239
7-11 RAM Test Circuits 240
7-12 Making TIN Pin Alternate Function 243
7-13 Making TOUT Pin Alternate Function 243
7-14 Example of Test Patterns 244
7-15 Theory of Scan Path Test Method 245
A-1 Load Dependency of Power Consumption 247
B-1 Delay Time Increase Due to Input Waveform 248
D-1 Circuit Diagram Example 254
D-2 Bidirectional Pin Names 255
D-3 Bidirectional Pin Test Pattern Generation 255
D-4 3-State Output Pin Names 256
D-5 3-State Output Pin Test Pattern Generation 256
D-6 Handling Macros 258
D-7 Timing Chart Entry 259
D-8 Timing Chart Example 259

LIST OF TABLES (1/2)

Table No. Title Page
1-1 Products 21
2-1 Number of Cells Placed 27
2-2 Usable Gates and Pin-Pair Count 27
2-3 List of Mountability 30
2-4 Minimum Number of Cells Occupied by Basic Macro 37
2-5 Occupied Cell Ranges 38
3-1 Terminology for Absolute Maximum Ratings 98
3-2 Terminology for Recommended Operating Conditions 98
3-3 Terminology for DC Characteristics 99
3-4 Absolute Maximum Ratings 100
3-5 Recommended Operating Range ($\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 101
3-6 DC Characteristics ($\mathrm{V} D \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 102
3-7 AC Characteristics (VDD $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 103
3-8 Recommended Operating Range ($\mathrm{VDD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 104
3-9 DC Characteristics ($\mathrm{VDD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 105
$3-10 \quad$ AC Characteristics ($\mathrm{VdD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 106
3-11 Recommended Operating Range ($\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 107
3-12 DC Characteristics ($\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$ 108
3-13 AC Characteristics ($\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 109
3-14 Capacitance of Interface Block (Св) 110
3-15 Capacitance of Packages (Сг) (Preliminary Values) 110
4-1 Power Consumption by Input Buffer 119
4-2 Output Buffer Power Consumption 120
4-3 Oscillator Power Consumption (Reference Values) (Vdd $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$) 121
4-4 Compensation Coefficient ($\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$) 126
4-5 Wiring Capacitance Estimate (Wiring Length Converted to F/I Value) 131
4-6 \quad tr and tf_{f} Calculation Coefficients of Output Buffer (VDD $=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) 137
4-7 tr and tf Calculation Coefficients of Output Buffer (VdD = 3.3 V, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) 137
4-8 Recommended Load Capacitance Ranges of Output Buffers (@5.0 V) 138
4-9 Recommended Load Capacitance Ranges of Output Buffers (@3.3 V) 138
4-10 Reference Time Ranges for Simultaneous Operation (TYP.) 151
4-11 Permissible Number of Simultaneous Operation Pins Between 3 GND Pins (lol = 12 mA) 155
4-12 Coefficient of Number of Simultaneous Operation Pins 156
5-1 F617 (D-F/F with RB, SB) 165
5-2 Features of Single-Phase and Multi-Phase Synchronous Circuit Design 166
5-3 CTS Blocks (Reference) 174
6-1 Test Pattern Types 204
6-2 Restrictions on Pin Names 205

LIST OF TABLES (2/2)

Table No. Title Page
6-3 Limitations on Number of Test Patterns 205
6-4 Timing Phase Number 207
6-5 Timing Constraints 207
6-6 Clock Mode 208
7-1 Recommended Oscillation Frequency Range and Configuration 226
7-2 Example of Criteria 232
7-3 List of Resonator Evaluations 233
7-4 Memory Blocks 235

CHAPTER 1 OVERVIEW

1.1 Features

The following table lists the CMOS-N5 Series features.

The features for each power supply voltage are as follows.
(1) V do $=5.0 \mathrm{~V} \pm 10 \%$

High-speed operation \qquad tpd $=0.14 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 1, wiring length: 0 mm) tPD $=0.21 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 1 , standard wiring length)
tPD $=0.46 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 2 , wiring length: 2 mm)
tpD $=0.16 \mathrm{~ns}$ (2-input NAND, fan-outs: 1 , standard wiring length)
tPD $=0.30 \mathrm{~ns}$ (2-input NAND, fan-outs: 2 , wiring length: 2 mm)
tPD $=0.18$ ns (2-input NAND, fan-outs: 2 , standard wiring length)
tPD $=0.33 \mathrm{~ns}$ (input buffer, fan-outs: 2 , wiring length: 2 mm)
tPD $=0.23 \mathrm{~ns}$ (input buffer, fan-outs: 1 , standard wiring length)
tPD $=1.30 \mathrm{~ns}$ (output buffer, $\mathrm{CL}=15 \mathrm{pF}$, lol $=9 \mathrm{~mA}$)

Power consumption \qquad $1.35 \mu \mathrm{~W} / \mathrm{MHz} /$ cell (internal gate, operating factor: 0.3)

Maximum clock frequency.....fmax $=200 \mathrm{MHz}$ (internal toggle F/F, fan-outs: 2 , wiring length: 0 mm)
(2) $\mathrm{Vdd}=3.0 \pm 0.3 \mathrm{~V}$

High-speed operation \qquad tpd $=0.20 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 1 , wiring length: 0 mm)
tpD $=0.30 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 1, standard wiring length)
tpD $=0.23$ ns (2-input NAND, fan-outs: 1 , standard wiring length)
tPD $=0.42 \mathrm{~ns}$ (2-input NAND, fan-outs: 2 , wiring length: 2 mm)
tpD $=0.26 \mathrm{~ns}$ (2-input NAND, fan-outs: 2 , standard wiring length)
tPD $=0.47 \mathrm{~ns}$ (input buffer, fan-outs: 2 , wiring length: 2 mm)
tPD $=0.34 \mathrm{~ns}$ (input buffer, fan-outs: 1 , standard wiring length)
tPD $=2.16 \mathrm{~ns}$ (output buffer, $\mathrm{CL}=15 \mathrm{pF}$, lol $=9 \mathrm{~mA}$)

Power consumption \qquad $0.49 \mu \mathrm{~W} / \mathrm{MHz} /$ cell (internal gate, operating factor: 0.3)

Maximum clock frequency.....fmax $=120 \mathrm{MHz}$ (internal toggle F/F, fan-outs: 2 , wiring length: 0 mm)
(3) $\mathrm{V} D \mathrm{D}=3.3 \pm 0.3 \mathrm{~V}$

High-speed operation \qquad tPD $=0.18 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 1 , wiring length: 0 mm) tPD $=0.28 \mathrm{~ns}$ (2-input NAND (low power gate), fan-outs: 1 , standard wiring length)
tPD $=0.22 \mathrm{~ns}$ (2-input NAND, fan-outs: 1 , standard wiring length)
tPD $=0.39 \mathrm{~ns}$ (2-input NAND, fan-outs: 2 , wiring length: 2 mm)
tPD $=0.24 \mathrm{~ns}$ (2-input NAND, fan-outs: 2 , standard wiring length)
tPD $=0.44 \mathrm{~ns}$ (input buffer, fan-outs: 2 , wiring length: 2 mm)
tPD $=0.31 \mathrm{~ns}$ (input buffer, fan-outs: 1 , standard wiring length)
tPD $=2.02 \mathrm{~ns}$ (output buffer, $\mathrm{CL}=15 \mathrm{pF}$, $\mathrm{loL}=9 \mathrm{~mA}$)

Power consumption \qquad $0.59 \mu \mathrm{~W} / \mathrm{MHz} /$ cell (internal gate, operating factor: 0.3)

Maximum clock frequency.....fmax $=130 \mathrm{MHz}$ (internal toggle F/F, fan-outs: 2 , wiring length: 0 mm)

1.2 CMOS-N5 Series Products

Table 1-1. Products

Master	Number of Row Gates	Number of Usable Gates
μ PD65891	1920	1536
μ PD65880	3456	2937
μ PD65881	5880	4998
μ PD65892	6692	5593
μ PD65882	13952	11859
μ PD65894	15232	12185
μ PD65883	25344	21542
μ PD65884	33864	28784
μ PD65885	40768	30576
μ PD65887	56496	41730
μ PD65889	76000	57000
μ PD65890	99528	74646
μ PD65893	123384	92538

Remark Total number of gates integrated on the chip in terms of 2-input NAND (1 cell = 1 gate)
Usable cell rate: μ PD65880, 65881, 65882, 65883, 65884 ... 85\%
μ PD65891, 65892, 65894 ... 80\%
μ PD65885, 65887, 65889, 65890, 65893 ... 75\%

1.3 Internal Structure of CMOS-N5 Series

Figure 1-1 shows the CMOS gate array internal structure, which is comprised of an internal cell region and an I/O cell region.

Figure 1-1. Gate Array Configuration

As shown in this figure, the CMOS-N5 Series does not have fixed routing regions in the internal cell region, and the entire surface of the internal cell region is filled with basic cells.

The internal cell region consists of various function blocks (such as NAND gates and D-F/F) and memory that are connected via routing layers to implement the desired circuit functions.

Input and output buffers are placed in the I/O cell region to adjust the input-level conversion and output drive capability. Some internal cells are also part of the I/O buffer implementation.

1.4 Internal Cell Structure

The circuit diagram in Figure 1-2 represents a CMOS-N5 Series internal cell.
Each cell of the CMOS-N5 Series can be configured as a device such as a two-input NAND/NOR gate, an inverter, or a buffer.

A CMOS circuit consists of a P-channel MOS transistor (P-ch. Tr) and an N-channel MOS transistor ($\mathrm{N}-\mathrm{ch}$. Tr). Normally, either the $\mathrm{P}-\mathrm{ch}$. Tr or the $\mathrm{N}-\mathrm{ch}$. Tr is in the OFF state.

Figure 1-2. Internal Cell Equivalent Circuit

Figure 1-3 (a) and (b) show the equivalent circuits of a 2-input NOR gate and a 2 -input NAND gate. Because the ON resistance of the N -ch. Tr is about fifty percent less than that of the P -ch. Tr, a large current can be sent through the N-ch. Tr. Therefore, as shown in Figure 1-3 (a), the ON resistance of the output rise side at the NOR gate, which is serially connected to the P-ch. Tr, becomes larger, and the drive capability of the load drops.

In CMOS gate arrays, the NOR fan-out drive is slower than the NAND fan-out drive. Because of this, the NAND blocks should be used as much as possible to increase the speed and stability of the circuit.

For the same reason, complex gates that serially connect many transistors tend to be slow, and therefore should not be used in high-speed circuits. Use complex gates to improve cell utilization when speed is not as important.

Figure 1-3. Equivalent Circuits
(a) 2-Input NOR Equivalent Circuit

(b) 2-Input NAND Equivalent Circuit

1.5 QFP Package

Figure $1-4$ shows a cross-section of a normal QFP package. In a normal QFP package, the chip is placed on a metal plate called an island. The leads and chip are connected by fine bonding wires measuring only several $10 \mu \mathrm{~m}$ in diameter.

In a low thermal resistance type QFP package, the lead and island materials have increased thermal dissipation properties. The construction itself is the same as a normal QFP package.

Figure 1-4. Cross-Section of QFP Package

CHAPTER 2 IMPLEMENTING THE SYSTEM USING THE GATE ARRAY

Be sure to read this chapter since it describes the information that is important when starting design.
When using gate arrays to develop an LSI to implement some or all of a system designed by the user, the specifications must be determined so that the circuit scale and the number of I/O pins of the gate arrays are optimum.

As the circuit scale increases, designing the circuit becomes more difficult and the cost of the LSI increases. However, because the number of I/O pins can be reduced, so can the mounting area on a printed wiring board.

In addition, because the number of LSIs used decreases, the propagation delay time is shortened.
However, as the circuit scale decreases, many separate gate arrays are required to configure the system. This is disadvantageous in terms of printed circuit board mounting. Moreover, because signals are transferred between many LSIs, it is difficult to shorten the propagation delay time.

Therefore, when selecting a gate array, take into consideration the propagation delay time and circuit scale.
Select a gate array in the following steps.

[Circuit selection steps]

(1) Estimate circuit scale and master size
\downarrow
(2) Select package
\downarrow
(3) Verify power consumption
\downarrow
(4) Verify pin placement
\downarrow
(5) Verify I/O interface level
\downarrow
(6) Design circuit
\downarrow
(7) Interface
\downarrow
(8) Check using the check items

2.1 Estimating Circuit Scale

2.1.1 Cell utilization rate, usable cell and pin-pair count limits

In a channel architecture gate array, the internal cell region is divided into two regions.

- Region where transistors that implement the function block are placed
- Routing dedicated region

In a channelless architecture gate array, the region for implementing the function blocks cannot be clearly distinguished from the routing region because the transistors that implement the function blocks are laid out over the entire internal cell region. Consequently, there is a stronger correlation between the number of cells utilized and the number of nets.

The CMOS-N5 Series uses a channelless architecture (sea-of-gates). This means that not all cells in the internal cell region can be used for function blocks such as gates, flip-flops, and memory. The number of cells actually used is the difference between the total number of cells and the routing cell region used by the number of wires between blocks (number of pin pairs).

The maximum cell utilization rate for the CMOS-N5 Series is as follows.

```
\muPD65880, 65881, 65882, 65883, 65884 : 85%
\muPD65891, 65892, 65894 : 80%
\muPD65885, 65887, 65889, 65890, 65893:75%
```

However, if a large-scale block, such as memory, is placed, it may be that the total cell utilization rate is further limited, depending on the type of macro (see 2.1.3 Large-scale macro mounting for details).

The pin-pair count is limited by the cell utilization rate and can be calculated by the following formula:

$$
\text { Pin-pair count }=150 \times \text { number of raw cells } \times\{(100-\text { cell utilization rate }) / 100\}^{2} / 74.69
$$

[Pin-pair count] is the number of wires connecting the output pins and input pins between blocks (see Figure 2-1).

Figure 2-1. Pin-Pair Count

If many small-scale blocks such as inverters are used, routing between blocks increases compared with the number of cells used, which increases the number of routing channels.

Conversely, if many large-scale blocks such as memory are used, routing between blocks decreases compared with the number of cells used, which decreases the number of channels required.

Consequently, when placing large-scale blocks, such as memory, the cell utilization rate is further limited. Circuits that do not include memory are limited by the pin-pair count.

Table 2-1. Number of Cells Placed

Master	X	Y	Cells Placed
$\mu \mathrm{PD} 65891$	80	24	1920
$\mu \mathrm{PD} 65880$	108	32	3456
$\mu \mathrm{PD} 65881$	140	42	5880
$\mu \mathrm{PD} 65892$	152	46	6992
$\mu \mathrm{PD} 65882$	218	64	13952
$\mu \mathrm{PD} 65894$	224	68	15232
$\mu \mathrm{PD} 65883$	288	88	25344
$\mu \mathrm{PD} 65884$	332	102	33864
$\mu \mathrm{PD} 65885$	364	112	40768
$\mu \mathrm{PD} 65887$	428	130	55640
$\mu \mathrm{PD} 65889$	500	152	76000
$\mu \mathrm{PD} 65890$	572	174	99528
$\mu \mathrm{PD} 65893$	636	194	123384

Remark $\mathrm{X} \times \mathrm{Y}$ under the heading "Cells Placed" indicates that the master has a cell space of X in the horizontal direction and a cell space of Y in the vertical direction.

If the actual cell utilization rate and pin-pair count can be satisfied, placement and routing can be guaranteed in the standard schedule in most cases. On the other hand, in cases where the limits are exceeded, placement and routing requires a longer time and, in the worst case, becomes impossible.

Table 2-2 shows the number of usable gates and the corresponding pin-pair count with respect to the cell utilization rate.

Table 2-2. Usable Gates and Pin-Pair Count (1/2)

Master	40\% Cell Utilization		50\% Cell Utilization		60\% Cell Utilization	
	Usable	Pin Pairs	Usable	Pin Pairs	Usable	Pin Pairs
μ PD65891	768	1388	960	963	1152	616
μ PD65880	1382	2498	1728	1735	2073	1110
$\mu \mathrm{PD} 65881$	2352	4251	2940	2952	3528	1889
$\mu \mathrm{PD} 65892$	2796	5055	3496	3510	4195	2246
$\mu \mathrm{PD} 65882$	5580	10087	6976	7004	8371	4483
$\mu \mathrm{PD} 65894$	6092	11012	7616	7647	9139	4894
$\mu \mathrm{PD} 65883$	10137	18323	12672	12724	15206	8143
$\mu \mathrm{PD} 65884$	13545	24483	16932	17002	20318	10881
$\mu \mathrm{PD} 65885$	16307	29474	20384	20468	24460	13099
$\mu \mathrm{PD} 65887$	22256	40227	27820	27935	33384	17878
$\mu \mathrm{PD} 65889$	30400	54947	38000	38157	45600	24420
$\mu \mathrm{PD} 65890$	39811	71957	49764	49970	59716	31981
$\mu \mathrm{PD} 65893$	49353	89205	61692	61948	74030	39646

Table 2-2. Usable Gates and Pin-Pair Count (2/2)

Master	70% Cell Utilization		75% Cell Utilization		80% Cell Utilization		85% Cell Utilization	
	Usable	Pin Pairs						
μ PD65891	1344	347	1440	240	1536	154	1632	86
μ PD65880	2419	624	2592	433	2764	277	2937	156
μ PD65881	4116	1062	4410	738	4704	472	4998	265
μ PD65892	4894	1263	5244	877	5593	561	5943	315
μ PD65882	9766	2521	10464	1751	11161	1120	11859	630
μ PD65894	10662	2753	11424	1911	12185	1223	12947	688
μ PD65883	17740	4580	19008	3181	20275	2035	21542	1145
μ PD65884	23704	6120	25398	4250	27091	2720	28784	1530
μ PD65885	28537	7368	30576	5117	32614	3274	34652	1842
μ PD65887	38948	10056	41730	6983	44512	4469	47294	2514
μ PD65889	53200	13736	57000	9539	60800	6105	64600	3434
μ PD65890	69669	17989	74646	12492	79622	7995	84598	4497
μ PD65893	86368	22301	92538	15847	98707	9911	104876	5575

2.1.2 Notes on estimating number of cells used

(1) Input/output/bidirectional buffer blocks

Not only I/O cells but also internal cells are used to configure external interface blocks such as input, output, and bidirectional blocks. Therefore, add the number of internal cells used for input, output, and bidirectional buffer blocks described in the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3
V) Block Library (A15895E) when calculating the total number of cells used.

(2) Critical paths

If there is a path in which speed is a problem, measures can be taken in some cases to shorten the propagation delay of that path. However, routability drops dramatically when such measures are taken. In such a case, the cell utilization rate and maximum pin-pair count should be reduced by about 10 to 20%.

(3) Macro configuration

Placement and routing are performed for each hierarchical macro (first hierarchy) in the circuit. Therefore, the hierarchical configuration calls for adequate consideration when a macro is created. Keep in mind the following points when performing hierarchical designing.
(a) Because the routing between macros of the first hierarchy is long, avoid hierarchical design that implements one function between macros.
(b) Avoid placing a small-scale macro used to facilitate circuit designing in the first hierarchy.

2.1.3 Large-scale macro mounting

Large-scale macro mountability is determined by whether or not it is possible to achieve the range ($\mathrm{X} \times \mathrm{Y}$) of cells needed to implement the macros on the physical space of the internal cells indicated by ($\mathrm{X} \times \mathrm{Y}$). For soft macros configured by small and medium-scale blocks, virtually no problems of mounting arise as long as the cell utilization rate is satisfied. However, there are cases in which large-scale hard macros such as RAM blocks (basic macro) and megamacros cannot be physically mounted due to the size of the master.
(1) Where only one large-scale macro is mounted

Table 2-3 shows the mountability of each large-scale macro on each master.

Table 2-3. List of Mountability (1/4)
(a) Single-Port RAM (1/2)

	Master	RB8M	RBAB	RBAD	RBAF	RBAH	RBC7	RBC9	RBCB	RBCD	RBCF	RBCH	RBCM	RBEB	RBED
\star	μ PD65891	\times													
	$\mu \mathrm{PD} 65880$	\times	\checkmark	\times	\times	\times	\checkmark	\checkmark	\times						
	μ PD65881	\times	\checkmark	\times	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\times	\times	\times	\times
\star	μ PD65892	\times	\checkmark	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\times	\times	\checkmark	\times
	μ PD65882	\times	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\times	\checkmark	\checkmark
\star	μ PD65894	\times	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\times	\checkmark	\checkmark
	μ PD65883	\times	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\checkmark
	μ PD65884	\checkmark	\times	\checkmark	\checkmark										
	μ PD65885	\checkmark	\times	\checkmark	\checkmark										
	μ PD65887	\checkmark	\times	\checkmark	\checkmark										
	μ PD65889	\checkmark													
	μ PD65890	\checkmark													
	μ PD65893	\checkmark													

Remark $\sqrt{ }$: Mountable, \times : Not mountable

Table 2-3. List of Mountability (2/4)
(a) Single-Port RAM (2/2)

Master	RBEF	RBEH	RBH7	RBH9	RBHB	RBHD	RBHF	RBHH	RBKB	RBKD	RBKF	RBKH
μ PD65891	\times											
μ PD65880	\times											
μ PD65881	\times	\times	\checkmark	\times								
μ PD65892	\times	\times	\checkmark	\checkmark	\times							
μ PD65882	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\times	\checkmark	\times	\times	\times
μ PD65894	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\times	\checkmark	\times	\times	\times
μ PD65883	\times	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\times	\times	\times
μ PD65884	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\times	\times
μ PD65885	\checkmark	\times	\checkmark	\checkmark	\times	\times						
μ PD65887	\checkmark	\times	\checkmark	\checkmark	\checkmark	\times						
μ PD65889	\checkmark											
μ PD65890	\checkmark											
μ PD65893	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Remark $\sqrt{ }$: Mountable, \times : Not mountable

Table 2-3. List of Mountability (3/4)
(b) Dual-Port RAM

	Master	R947	R949	R94B	R94D	R94F	R94H	R987	R989	R98B	R98D	R98F	R9AB	R9AD	R9C7
\star	μ PD65891	\checkmark	\checkmark	\times	\times	\times	\times	\checkmark	\times						
	μ PD65880	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\times	\checkmark
	$\mu \mathrm{PD} 65881$	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\times	\checkmark
\star	μ PD65892	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\times	\checkmark
	μ PD65882	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark
\star	$\mu \mathrm{PD} 65894$	\checkmark													
	μ PD65883	\checkmark													
	μ PD65884	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark									
	μ PD65885	\checkmark													
	μ PD65887	\checkmark													
	μ PD65889	\checkmark													
	μ PD65890	\checkmark													
	μ PD65893	\checkmark													

	Master	R9C9	R9CB	R9CD	R9CF	R9EB	R9ED	R9H7	R9H9	R9HB	R9KB
\star	μ PD65891	\times									
	μ PD65880	\times									
	μ PD65881	\checkmark	\times								
\star	μ PD65892	\checkmark	\times	\times	\times	\times	\times	\checkmark	\times	\times	\times
	$\mu \mathrm{PD} 65882$	\checkmark	\checkmark	\times	\times	\checkmark	\times	\checkmark	\checkmark	\times	\times
*	$\mu \mathrm{PD} 65894$	\checkmark	\checkmark	\checkmark	\times	\checkmark	\times	\checkmark	\checkmark	\checkmark	\times
	$\mu \mathrm{PD} 65883$	\checkmark									
	μ PD65884	\checkmark									
	$\mu \mathrm{PD} 65885$	\checkmark									
	μ PD65887	\checkmark									
	μ PD65889	\checkmark									
	$\mu \mathrm{PD} 65890$	\checkmark									
	μ PD65893	\checkmark									

Remark $\sqrt{ }$: Mountable, \times : Not mountable

Table 2-3. List of Mountability (4/4)
(c) Megamacro

Master	NA37A	NA51A	NA54A	NA55A	NA59A	NA16550A
μ PD65891	\times	\times	\times	\times	\times	\times
μ PD65880	\times	\times	\times	\checkmark	\times	\times
μ PD65881	\times	\checkmark	\times	\checkmark	\checkmark	\times
μ PD65892	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times
μ PD65882	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65894	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65883	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65884	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65885	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65887	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65889	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65890	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
μ PD65893	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Remark $\sqrt{ }$: Mountable, \times : Not mountable

(2) Where two or more large-scale macros are mounted

Whether two or more macros can be mounted is determined by the range of the cells necessary for implementing each macro on the chip, and the range of cells that can be implemented on the master.

(a) Range of cells occupied by each macro on chip (soft macro RAM)

An NEC Electronics RAM is implemented by soft macros that consist of a basic macro and a logic area. The shape of the cell area occupied to implement a macro depends on how the basic macro is placed. The cell area occupied is limited by the master selected.

Figure 2-2. Shape of Cell Range Occupied by Macros (with 4 Basic Macros)

$<1>$ Limited by the number of vertical cells of the master.
$<2>$ Limited by the number of horizontal cells of the master.
$<3>$ Effective if the number of basic blocks used becomes large.
$<4>$ Physically possible but ineffective (because the placement range that can be set up during placement and routing is square or rectangular, the diagonally shaded area is wasted).

Table 2-5 lists examples of the cell ranges occupied by macros. However, it is possible to redefine cell ranges for a RAM outside those in Table 2-4.
To define cell ranges for soft macro RAM, first find the basic macro name and the number of cells required to configure the soft macro RAM in Table 2-5. Next, find the minimum number of cells occupied by the macro (X and Y values) in order to place one basic macro in Table 2-4. Then calculate the cell range by substituting in the variables in the following equation with the values from Tables 2-4 and 2-5.

Figure 2-3. Cell Range Occupied by Macro

$y=2^{n} \times H y+Y$
x = soft/uty/y

In the above equation, $x \geq \mathrm{N} / 2^{\mathrm{n}} \times \mathrm{Hx}$ must be satisfied.
soft: Number of cells in the soft macro RAM
uty: 0.60
Hx : Minimum number of cells occupied in the horizontal direction needed for placing basic macros.
Hy: Minimum number of cells occupied in the vertical direction needed for placing basic macros.
N : Number of basic macros used
$\mathrm{n} \quad$ When the number of basic macros is $1, \mathrm{n}=0$
When the number of basic macros is $2, \mathrm{n}=0,1$
When the number of basic macros is $4, n=0,1,2$
When the number of basic macros is $8, n=0,1,2,3$
When the number of basic macros is $16, \mathrm{n}=0,1,2,3,4$
When the number of basic macros is $32, \mathrm{n}=0,1,2,3,4,5$
$\mathrm{Y}: \quad$ Arbitrary integer $(\mathrm{Y}=0,1,2, \ldots)$
(b) Array of internal cells of master selected (see Table 2-1)

Internal cells are also used for interface blocks and are limited as closely as possible to the I/O cell range in the CMOS-N5 Series. The area of internal cells used by the interface block is 17 internal cells from the left edge to the right edge and 2 cells from the top edge to the bottom edge. Therefore the cell area in which the macro can be placed must be within the 17×2 range (blank part).

Figure 2-4. Area Where Macros Cannot Be Implemented

(c) Determining mountability

Macros are mountable if they can all be placed without overlapping, within the allowable area for implementing macros on the chip. If they are unmountable, modification of the shape of the macro-occupied area must be considered. If only a few cells overlap, contact NEC Electronics to determine mountability taking the pin configuration and macro placement position into consideration.

Table 2-4. Minimum Number of Cells Occupied by Basic Macro
(a) Single-Port RAM

Basic Macro Name	Words	Bits	X	Y
K147	16	4	29	12
K149	32	4	47	13
K14D	128	4	79	22
K18B	64	8	81	21
K18F	256	8	158	38
K1AB	64	10	81	25

(b) Dual-Port RAM

Basic Macro Name	Words	Bits	X	Y
K247	16	4	37	13
K249	32	4	63	15
K24D	128	4	112	24
K28B	64	8	113	24
K28F	256	8	224	41
K2AB	64	10	113	28

Table 2-5 shows the block names and cell ranges occupied by each RAM macro on the chip.

Table 2-5. Occupied Cell Ranges (1/8)
(a) Single-Port RAM (75\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	RB47	K147 $\times 1$	54	12						
32×4	RB49	K149 $\times 1$	71	13						
64×4	RB4B	K149 $\times 2$	61	26	122	13				
128×4	RB4D	$\mathrm{K} 14 \mathrm{D} \times 1$	96	22						
256×4	RB4F	K14D $\times 2$	89	44	177	22				
512×4	RB4H	$\mathrm{K} 14 \mathrm{D} \times 4$	81	91	168	44	335	22		
$1 \mathrm{~K} \times 4$	RB4M	$\mathrm{K} 14 \mathrm{D} \times 8$	78	185	159	91	328	44		
$2 \mathrm{~K} \times 4$	RB4S	$\mathrm{K} 14 \mathrm{D} \times 16$	155	185	155	91				
16×8	RB87	$\mathrm{K} 147 \times 2$	44	24	87	12				
32×8	RB89	K149 $\times 2$	61	26	122	13				
64×8	RB8B	$\mathrm{K} 18 \mathrm{~B} \times 1$	100	21						
128×8	RB8D	K14D $\times 2$	89	44	177	22				
256×8	RB8F	$\mathrm{K} 18 \mathrm{~F} \times 1$	170	38						
512×8	RB8H	$\mathrm{K} 18 \mathrm{~F} \times 2$	165	76	329	38				
$1 \mathrm{~K} \times 8$	RB8M	$\mathrm{K} 18 \mathrm{~F} \times 4$	159	155	323	76				
64×10	RBAB	$\mathrm{K} 1 \mathrm{AB} \times 1$	98	25						
128×10	RBAD	$\mathrm{K} 1 \mathrm{AB} \times 2$	91	50	181	25				
256×10	RBAF	$\mathrm{K} 1 \mathrm{AB} \times 4$	84	103	173	50	346	25		
512×10	RBAH	$\mathrm{K} 1 \mathrm{AB} \times 8$	164	103	338	50				
16×16	RBC7	$\mathrm{K} 147 \times 4$	36	51	77	24	153	12		
32×16	RBC9	K149 $\times 4$	53	55	112	26	224	13		
64×16	RBCB	$\mathrm{K} 18 \mathrm{~B} \times 2$	93	42	186	21				
128×16	RBCD	$\mathrm{K} 14 \mathrm{D} \times 4$	82	91	170	44	340	22		
256×16	RBCF	$\mathrm{K} 18 \mathrm{~F} \times 2$	165	76	330	38				
512×16	RBCH	K18F $\times 4$	159	155	324	76				
$1 \mathrm{~K} \times 16$	RBCM	K18F $\times 8$	315	155						
64×20	RBEB	$\mathrm{K} 1 \mathrm{AB} \times 2$	93	50	185	25				
128×20	RBED	$\mathrm{K} 1 \mathrm{AB} \times 4$	85	103	175	50	350	25		
256×20	RBEF	$\mathrm{K} 1 \mathrm{AB} \times 8$	165	103	339	50				
512×20	RBEH	$\mathrm{K} 1 \mathrm{AB} \times 16$	324	103						
16×32	RBH7	K147 $\times 8$	33	105	68	51	143	24	286	12
32×32	RBH9	K149 $\times 8$	50	113	101	55	214	26	427	13
64×32	RBHB	$\mathrm{K} 18 \mathrm{~B} \times 4$	87	87	179	42	357	21		
128×32	RBHD	K14D $\times 8$	79	185	161	91	333	44		
256×32	RBHF	$\mathrm{K} 18 \mathrm{~F} \times 4$	160	155	325	76				
512×32	RBHH	$\mathrm{K} 18 \mathrm{~F} \times 8$	315	155						
64×40	RBKB	$\mathrm{K} 1 \mathrm{AB} \times 4$	87	103	179	50	357	25		
128×40	RBKD	$\mathrm{K} 1 \mathrm{AB} \times 8$	167	103	343	50				
256×40	RBKF	$\mathrm{K} 18 \mathrm{~F} \times 5$	315	117	485	76				
512×40	RBKH	$\mathrm{K} 18 \mathrm{~F} \times 10$	474	155	624	117				

Table 2-5. Occupied Cell Ranges (2/8)
(b) Single-Port RAM (70\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	RB47	K147 $\times 1$	56	12						
32×4	RB49	K149 $\times 1$	73	13						
64×4	RB4B	K149 $\times 2$	62	26	124	13				
128×4	RB4D	K14D $\times 1$	97	22						
256×4	RB4F	$\mathrm{K} 14 \mathrm{D} \times 2$	89	44	178	22				
512×4	RB4H	$\mathrm{K} 14 \mathrm{D} \times 4$	82	91	168	44	336	22		
$1 \mathrm{~K} \times 4$	RB4M	K14D $\times 8$	79	185	159	91	329	44		
$2 \mathrm{~K} \times 4$	RB4S	K14D $\times 16$	155	185	314	91				
16×8	RB87	K147 $\times 2$	45	24	89	12				
32×8	RB89	K149 $\times 2$	62	26	124	13				
64×8	RB8B	$\mathrm{K} 18 \mathrm{~B} \times 1$	101	21						
128×8	RB8D	$\mathrm{K} 14 \mathrm{D} \times 2$	89	44	178	22				
256×8	RB8F	$\mathrm{K} 18 \mathrm{~F} \times 1$	171	38						
512×8	RB8H	$\mathrm{K} 18 \mathrm{~F} \times 2$	165	76	330	38				
$1 \mathrm{~K} \times 8$	RB8M	K18F $\times 4$	159	155	324	76				
64×10	RBAB	$\mathrm{K} 1 \mathrm{AB} \times 1$	99	25						
128×10	RBAD	$\mathrm{K} 1 \mathrm{AB} \times 2$	92	50	183	25				
256×10	RBAF	$\mathrm{K} 1 \mathrm{AB} \times 4$	85	103	174	50	347	25		
512×10	RBAH	$\mathrm{K} 1 \mathrm{AB} \times 8$	165	103	338	50				
16×16	RBC7	$\mathrm{K} 147 \times 4$	37	51	78	24	156	12		
32×16	RBC9	K149 $\times 4$	54	55	114	26	227	13		
64×16	RBCB	K18B $\times 2$	94	42	187	21				
128×16	RBCD	$\mathrm{K} 14 \mathrm{D} \times 4$	83	91	171	44	341	22		
256×16	RBCF	$\mathrm{K} 18 \mathrm{~F} \times 2$	166	76	331	38				
512×16	RBCH	$\mathrm{K} 18 \mathrm{~F} \times 4$	159	155	325	76				
$1 \mathrm{~K} \times 16$	RBCM	$\mathrm{K} 18 \mathrm{~F} \times 8$	315	155						
64×20	RBEB	$\mathrm{K} 1 \mathrm{AB} \times 2$	93	50	186	25				
128×20	RBED	$\mathrm{K} 1 \mathrm{AB} \times 4$	86	103	176	50	352	25		
256×20	RBEF	$\mathrm{K} 1 \mathrm{AB} \times 8$	165	103	340	50				
512×20	RBEH	$\mathrm{K} 1 \mathrm{AB} \times 16$	324	103						
16×32	RBH7	$\mathrm{K} 147 \times 8$	34	105	68	51	145	24	289	12
32×32	RBH9	K149 $\times 8$	50	113	102	55	216	26	431	13
64×32	RBHB	$\mathrm{K} 18 \mathrm{~B} \times 4$	87	87	180	42	359	21		
128×32	RBHD	$\mathrm{K} 14 \mathrm{D} \times 8$	80	185	162	91	334	44		
256×32	RBHF	$\mathrm{K} 18 \mathrm{~F} \times 4$	160	155	326	76				
512×32	RBHH	$\mathrm{K} 18 \mathrm{~F} \times 8$	316	155						
64×40	RBKB	$\mathrm{K} 1 \mathrm{AB} \times 4$	88	103	180	50	359	25		
128×40	RBKD	$\mathrm{K} 1 \mathrm{AB} \times 8$	168	103	345	50				
256×40	RBKF	$\mathrm{K} 18 \mathrm{~F} \times 5$	315	117	485	76				
512×40	RBKH	$\mathrm{K} 18 \mathrm{~F} \times 10$	474	155	624	117				

Table 2-5. Occupied Cell Ranges (3/8)
(c) Single-Port RAM (60\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	RB47	K147 $\times 1$	61	12						
32×4	RB49	K149 $\times 1$	77	13						
64×4	RB4B	K149 $\times 2$	65	26	129	13				
128×4	RB4D	K14D $\times 1$	100	22						
256×4	RB4F	K14D $\times 2$	91	44	181	22				
512×4	RB4H	K14D $\times 4$	82	91	170	44	339	22		
$1 \mathrm{~K} \times 4$	RB4M	$\mathrm{K} 14 \mathrm{D} \times 8$	79	185	160	91	331	44		
$2 \mathrm{~K} \times 4$	RB4S	K14D $\times 16$	155	185	316	91				
16×8	RB87	K147 $\times 2$	47	24	94	12				
32×8	RB89	K149 $\times 2$	65	26	129	13				
64×8	RB8B	$\mathrm{K} 18 \mathrm{~B} \times 1$	105	21						
128×8	RB8D	$\mathrm{K} 14 \mathrm{D} \times 2$	91	44	182	22				
256×8	RB8F	K18F $\times 1$	173	38						
512×8	RB8H	$\mathrm{K} 18 \mathrm{~F} \times 2$	166	76	332	38				
$1 \mathrm{~K} \times 8$	RB8M	$\mathrm{K} 18 \mathrm{~F} \times 4$	159	155	325	76				
64×10	RBAB	$\mathrm{K} 1 \mathrm{AB} \times 1$	102	25						
128×10	RBAD	$\mathrm{K} 1 \mathrm{AB} \times 2$	93	50	186	25				
256×10	RBAF	$\mathrm{K} 1 \mathrm{AB} \times 4$	86	103	176	50	351	25		
512×10	RBAH	$\mathrm{K} 1 \mathrm{AB} \times 8$	166	103	341	50				
16×16	RBC7	K147 $\times 4$	39	51	81	24	162	12		
32×16	RBC9	K149 $\times 4$	55	55	117	26	233	13		
64×16	RBCB	$\mathrm{K} 18 \mathrm{~B} \times 2$	96	42	191	21				
128×16	RBCD	$\mathrm{K} 14 \mathrm{D} \times 4$	84	91	173	44	345	22		
256×16	RBCF	$\mathrm{K} 18 \mathrm{~F} \times 2$	167	76	334	38				
512×16	RBCH	$\mathrm{K} 18 \mathrm{~F} \times 4$	160	155	326	76				
$1 \mathrm{~K} \times 16$	RBCM	$\mathrm{K} 18 \mathrm{~F} \times 8$	316	155						
64×20	RBEB	$\mathrm{K} 1 \mathrm{AB} \times 2$	95	50	190	25				
128×20	RBED	$\mathrm{K} 1 \mathrm{AB} \times 4$	87	103	178	50	356	25		
256×20	RBEF	$\mathrm{K} 1 \mathrm{AB} \times 8$	167	103	343	50				
512×20	RBEH	$\mathrm{K} 1 \mathrm{AB} \times 16$	326	103						
16×32	RBH7	$\mathrm{K} 147 \times 8$	35	105	71	51	150	24	299	12
32×32	RBH9	K149 $\times 8$	51	113	104	55	220	26	440	13
64×32	RBHB	K18B $\times 4$	89	87	183	42	365	21		
128×32	RBHD	$\mathrm{K} 14 \mathrm{D} \times 8$	80	185	163	91	337	44		
256×32	RBHF	$\mathrm{K} 18 \mathrm{~F} \times 4$	161	155	328	76				
512×32	RBHH	$\mathrm{K} 18 \mathrm{~F} \times 8$	317	155						
64×40	RBKB	$\mathrm{K} 1 \mathrm{AB} \times 4$	89	103	183	50	365	25		
128×40	RBKD	$\mathrm{K} 1 \mathrm{AB} \times 8$	169	103	348	50				
256×40	RBKF	$\mathrm{K} 18 \mathrm{~F} \times 5$	317	117	487	76				
512×40	RBKH	$\mathrm{K} 18 \mathrm{~F} \times 10$	474	155	626	117				

Table 2-5. Occupied Cell Ranges (4/8)
(d) Single-Port RAM (50\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	RB47	K147 $\times 1$	67	12						
32×4	RB49	K149 $\times 1$	83	13						
64×4	RB4B	K149 $\times 2$	68	26	135	13				
128×4	RB4D	$\mathrm{K} 14 \mathrm{D} \times 1$	104	22						
256×4	RB4F	$\mathrm{K} 14 \mathrm{D} \times 2$	93	44	186	22				
512×4	RB4H	K14D $\times 4$	83	91	172	44	344	22		
$1 \mathrm{~K} \times 4$	RB4M	K14D $\times 8$	80	185	162	91	334	44		
$2 \mathrm{~K} \times 4$	RB4S	$\mathrm{K} 14 \mathrm{D} \times 16$	156	185	156	91				
16×8	RB87	K147 $\times 2$	51	24	101	12				
32×8	RB89	K149 $\times 2$	68	26	136	13				
64×8	RB8B	$\mathrm{K} 18 \mathrm{~B} \times 1$	109	21						
128×8	RB8D	$\mathrm{K} 14 \mathrm{D} \times 2$	93	44	186	22				
256×8	RB8F	$\mathrm{K} 18 \mathrm{~F} \times 1$	175	38						
512×8	RB8H	$\mathrm{K} 18 \mathrm{~F} \times 2$	168	76	336	38				
$1 \mathrm{~K} \times 8$	RB8M	$\mathrm{K} 18 \mathrm{~F} \times 4$	160	155	326	76				
64×10	RBAB	$\mathrm{K} 1 \mathrm{AB} \times 1$	107	25						
128×10	RBAD	$\mathrm{K} 1 \mathrm{AB} \times 2$	96	50	191	25				
256×10	RBAF	$\mathrm{K} 1 \mathrm{AB} \times 4$	87	103	178	50	356	25		
512×10	RBAH	$\mathrm{K} 1 \mathrm{AB} \times 8$	167	103	344	50				
16×16	RBC7	$\mathrm{K} 147 \times 4$	41	51	86	24	171	12		
32×16	RBC9	$\mathrm{K} 149 \times 4$	58	55	121	26	242	13		
64×16	RBCB	$\mathrm{K} 18 \mathrm{~B} \times 2$	99	42	197	21				
128×16	RBCD	$\mathrm{K} 14 \mathrm{D} \times 4$	85	91	176	44	351	22		
256×16	RBCF	$\mathrm{K} 18 \mathrm{~F} \times 2$	169	76	337	38				
512×16	RBCH	$\mathrm{K} 18 \mathrm{~F} \times 4$	161	155	328	76				
$1 \mathrm{~K} \times 16$	RBCM	$\mathrm{K} 18 \mathrm{~F} \times 8$	317	155						
64×20	RBEB	$\mathrm{K} 1 \mathrm{AB} \times 2$	98	50	196	25				
128×20	RBED	$\mathrm{K} 1 \mathrm{AB} \times 4$	88	103	181	50	362	25		
256×20	RBEF	$\mathrm{K} 1 \mathrm{AB} \times 8$	168	103	347	50				
512×20	RBEH	$\mathrm{K} 1 \mathrm{AB} \times 16$	328	103						
16×32	RBH7	$\mathrm{K} 147 \times 8$	36	105	74	51	156	24	312	12
32×32	RBH9	K149 $\times 8$	52	113	107	55	226	26	452	13
64×32	RBHB	$\mathrm{K} 18 \mathrm{~B} \times 4$	91	87	187	42	373	21		
128×32	RBHD	K14D $\times 8$	81	185	165	91	341	44		
256×32	RBHF	$\mathrm{K} 18 \mathrm{~F} \times 4$	162	155	330	76				
512×32	RBHH	$\mathrm{K} 18 \mathrm{~F} \times 8$	318	155						
64×40	RBKB	$\mathrm{K} 1 \mathrm{AB} \times 4$	91	103	187	50	373	25		
128×40	RBKD	$\mathrm{K} 1 \mathrm{AB} \times 8$	171	103	353	50				
256×40	RBKF	$\mathrm{K} 18 \mathrm{~F} \times 5$	318	117	490	76				
512×40	RBKH	$\mathrm{K} 18 \mathrm{~F} \times 10$	474	155	628	117				

Table 2-5. Occupied Cell Ranges (5/8)
(e) Dual-Port RAM (75\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	R947	K247 $\times 1$	63	13						
32×4	R949	K249 $\times 1$	85	15						
64×4	R94B	K249 $\times 2$	76	30	151	15				
128×4	R94D	K24D $\times 1$	129	24						
256×4	R94F	K24D $\times 2$	121	48	242	24				
512×4	R94H	K24D $\times 4$	113	99	233	48	465	24		
16×8	R987	K247 $\times 2$	56	26	111	13				
32×8	R989	K249 $\times 2$	75	30	150	15				
64×8	R98B	K28B $\times 1$	131	24						
128×8	R98D	K24D $\times 2$	121	48	242	24				
256×8	R98F	$\mathrm{K} 28 \mathrm{~F} \times 1$	235	41						
64×10	R9AB	$\mathrm{K} 2 \mathrm{AB} \times 1$	129	28						
128×10	R9AD	$\mathrm{K} 2 \mathrm{AB} \times 2$	122	56	244	28				
16×16	R9C7	K247 $\times 4$	44	55	93	26	186	13		
32×16	R9C9	K249 $\times 4$	67	63	141	30	281	15		
64×16	R9CB	K28B $\times 2$	124	48	247	24				
128×16	R9CD	K24D $\times 4$	114	99	235	48	469	24		
256×16	R9CF	$\mathrm{K} 28 \mathrm{~F} \times 2$	230	82	460	41				
64×20	R9EB	$\mathrm{K} 2 \mathrm{AB} \times 2$	123	56	246	28				
128×20	R9ED	$\mathrm{K} 2 \mathrm{AB} \times 4$	116	115	237	56	474	28		
16×32	R9H7	K247 $\times 8$	41	113	83	55	175	26	349	13
32×32	R9H9	$\mathrm{K} 249 \times 8$	63	129	129	63	271	30	541	15
64×32	R9HB	K28B $\times 4$	117	99	240	48	480	24		
64×40	R9KB	K2AB $\times 4$	117	115	240	56	480	28		

Table 2-5. Occupied Cell Ranges (6/8)
(f) Dual-Port RAM (70\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	R947	K247 $\times 1$	65	13						
32×4	R949	K249 $\times 1$	87	15						
64×4	R94B	K249 $\times 2$	77	30	153	15				
128×4	R94D	K24D $\times 1$	130	24						
256×4	R94F	K24D $\times 2$	122	48	243	24				
512×4	R94H	K24D $\times 4$	113	99	234	48	467	24		
16×8	R987	K247 $\times 2$	53	26	105	13				
32×8	R989	K249 $\times 2$	76	30	152	15				
64×8	R98B	$\mathrm{K} 28 \mathrm{~B} \times 1$	132	24						
128×8	R98D	K24D $\times 2$	122	48	244	24				
256×8	R98F	K28F $\times 1$	236	41						
64×10	R9AB	$\mathrm{K} 2 \mathrm{AB} \times 1$	130	28						
128×10	R9AD	$\mathrm{K} 2 \mathrm{AB} \times 2$	123	56	246	28				
16×16	R9C7	K247 $\times 4$	45	55	95	26	189	13		
32×16	R9C9	K249 $\times 4$	68	63	142	30	283	15		
64×16	R9CB	K28B $\times 2$	125	48	249	24				
128×16	R9CD	K24D $\times 4$	114	99	235	48	470	24		
256×16	R9CF	$\mathrm{K} 28 \mathrm{~F} \times 2$	230	82	460	41				
64×20	R9EB	$\mathrm{K} 2 \mathrm{AB} \times 2$	124	56	248	28				
128×20	R9ED	$\mathrm{K} 2 \mathrm{AB} \times 4$	116	115	238	56	476	28		
16×32	R9H7	K247 $\times 8$	41	113	84	55	177	26	353	13
32×32	R9H9	K249 $\times 8$	64	129	130	63	272	30	543	15
64×32	R9HB	K28B $\times 4$	117	99	241	48	482	24		
64×40	R9KB	K2AB $\times 4$	118	115	241	56	482	28		

Table 2-5. Occupied Cell Ranges (7/8)
(g) Dual-Port RAM (60\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	R947	K247 $\times 1$	69	13						
32×4	R949	K249 $\times 1$	91	15						
64×4	R94B	K249 $\times 2$	79	30	157	15				
128×4	R94D	K24D $\times 1$	133	24						
256×4	R94F	K24D $\times 2$	123	48	246	24				
512×4	R94H	K24D $\times 4$	114	99	235	48	470	24		
16×8	R987	K247 $\times 2$	56	26	111	13				
32×8	R989	K249 $\times 2$	78	30	156	15				
64×8	R98B	K28B $\times 1$	135	24						
128×8	R98D	K24D $\times 2$	124	48	247	24				
256×8	R98F	K28F $\times 1$	238	41						
64×10	R9AB	$\mathrm{K} 2 \mathrm{AB} \times 1$	133	28						
128×10	R9AD	$\mathrm{K} 2 \mathrm{AB} \times 2$	125	56	249	28				
16×16	R9C7	K247 $\times 4$	47	55	98	26	196	13		
32×16	R9C9	K249 $\times 4$	69	63	144	30	288	15		
64×16	R9CB	K28B $\times 2$	127	48	253	24				
128×16	R9CD	K24D $\times 4$	115	99	237	48	474	24		
256×16	R9CF	K28F $\times 2$	231	82	462	41				
64×20	R9EB	$\mathrm{K} 2 \mathrm{AB} \times 2$	126	56	251	28				
128×20	R9ED	$\mathrm{K} 2 \mathrm{AB} \times 4$	117	115	240	56	480	28		
16×32	R9H7	K247 $\times 8$	42	113	86	55	182	26	363	13
32×32	R9H9	K249 $\times 8$	64	129	131	63	275	30	550	15
64×32	R9HB	K28B $\times 4$	118	99	244	48	487	24		
64×40	R9KB	K2AB $\times 4$	119	115	244	56	487	28		

Table 2-5. Occupied Cell Ranges (8/8)
(h) Dual-Port RAM (50\% Cell Utilization)

Words \times Bits	Soft Macro RAM	Basic Macro \times Q'ty	Cell Ranges Occupied by RAM							
			Type A		Type B		Type C		Type D	
			X	Y	X	Y	X	Y	X	Y
16×4	R947	K247 $\times 1$	75	13						
32×4	R949	K249 $\times 1$	96	15						
64×4	R94B	K249 $\times 2$	82	30	163	15				
128×4	R94D	K24D $\times 1$	137	24						
256×4	R94F	K24D $\times 2$	126	48	251	24				
512×4	R94H	K24D $\times 4$	115	99	237	48	474	24		
16×8	R987	K247 $\times 2$	59	26	118	13				
32×8	R989	K249 $\times 2$	81	30	162	15				
64×8	R98B	K28B $\times 1$	139	24						
128×8	R98D	K24D $\times 2$	126	48	251	24				
256×8	R98F	K28F $\times 1$	240	41						
64×10	R9AB	$\mathrm{K} 2 \mathrm{AB} \times 1$	137	28						
128×10	R9AD	$\mathrm{K} 2 \mathrm{AB} \times 2$	127	56	253	28				
16×16	R9C7	K247 $\times 4$	49	55	103	26	205	13		
32×16	R9C9	K249 $\times 4$	71	63	148	30	296	15		
64×16	R9CB	K28B $\times 2$	129	48	258	24				
128×16	R9CD	K24D $\times 4$	117	99	240	48	479	24		
256×16	R9CF	K28F $\times 2$	233	82	465	41				
64×20	R9EB	$\mathrm{K} 2 \mathrm{AB} \times 2$	128	56	256	28				
128×20	R9ED	$\mathrm{K} 2 \mathrm{AB} \times 4$	119	115	243	56	485	28		
16×32	R9H7	K247 $\times 8$	44	113	89	55	188	26	376	13
32×32	R9H9	K249 $\times 8$	65	129	133	63	280	30	559	15
64×32	R9HB	K28B $\times 4$	120	99	247	48	494	24		
64×40	R9KB	K2AB $\times 4$	121	115	247	56	494	28		

2.1.4 Notes on mounting large-scale macros (memory)

The following points must be noted when mounting large-scale macros.

- External pin placement
- Block type used for circuits other than macros

(1) External pin placement

Place related external pins close to macros if two or more large-scale macros are mounted. If no consideration is given to pin placement, the routing of external pins may be long and routing channels wasted.
As a result, routing may not be completed. When mounting two or more large-scale macros, contact NEC Electronics for the macro placement method.
(2) Block type used for circuits other than macros

When the number of cells that can be used for logic is reduced because of large-scale macros, medium-scale macros, such as 8 -bit latches, may not fit in the available space.
\star (3) Mountability based on power supply voltage
Megamacros and memory macros cannot be used with a power supply voltage specification of 3.3 V or 3.0 V.

2.2 Verifying Power Consumption

Although CMOS gate arrays are of a low power consumption type, a considerable amount of power is consumed when they are operated at speeds greater than 30 MHz . The temperature of the LSI increases with the amount of power used. The reliability of the product is not guaranteed if the temperature increases beyond the maximum values specified here, therefore it is necessary to hold the power consumption of the LSI below these maximum values.

The maximum power consumption limit varies depending on the package type. To improve the allowable power consumption, special QFP packages with low thermal resistance heat spreaders are provided. Figure 2-5 shows the relationship between the QFP type and the allowable power consumption. For detailed data, see 4.3 Power Consumption.

Figure 2-5. Allowable Power Consumption vs. QFP Type

2.3 Pin Placement

The positions of the package power supply pins and NC pins are predetermined. The points noted below must be considered in determining the pin layout (pin placement).

There are cases where the power requirement will increase, depending on the results of investigating items such as the number of simultaneously operating output pins.

For details, see 4.6 Restrictions to Simultaneous Operation of Output Buffers.

2.3.1 Notes on pin layout

(1) Clock pins, control (set, reset) pins

Because these pins are subject to noise, they must be placed close to ground (GND) pins.

(2) Output pins

Because output pins are subject to clock pin noise, they should be isolated as much as possible. If a large group of output pins has many simultaneously operating pins, the group should be surrounded by Vod and GND pins.

(3) No connection (NC) pins

When a gate array is mounted on a printed circuit board, do not use an NC pin as a signal relay pin.
Some NC pins are actually connected to the pads of the chip. Connect the NC pins to ground (GND) or Vdd when mounting on a printed circuit board.

(4) Scan path I/O pins

The placement of test pins for each package is predetermined. If scan path is used, be sure to specify scan path I/O pins for the specified pin number.
For details, see NEC SYSTEM LSI DESIGN Design For Test User's Manual.

(5) Placing oscillator

For details of the positions at which an oscillator can be placed, see the tables concerning pins that can be used for oscillators in CMOS Gate Array, Embedded Array Package Design Manual (A16400E).
Do not place pins that may malfunction when noise is superimposed on them (such as a reset pin) in the vicinity of the oscillator.

2.4 I/O Interface

2.4.1 Input blocks

Signal Level
CMOS
TTL
Function
Baffer
Fail safe
:---:
Schmitt trigger

Pull-Up/Pull-Down Resistor
No resistor
With $50 \mathrm{k} \Omega$ pull-up resistor
With $5 \mathrm{k} \Omega$ pull-up resistor
With $50 \mathrm{k} \Omega$ pull-down resistor

Signal Level
LVTTL
Function
Oscillator
:---:
Special

There are two types of input interface blocks:

<1> CMOS level interface block

This block connects to the current CMOS LSI. Blocks with fail-safe functions are also available. A block with a fail-safe function has a protection function against over voltage. There is no continuity to the gate array power supply when the gate array power supply voltage is in the OFF state, even if a signal is applied.

<2> TTL level interface block

This block connects to the current TTL LSI. Blocks with fail-safe functions are available in this type as well.

2.4.2 Output blocks

Signal Level	Function
CMOS	Buffer
	3-state
	Open-drain

Pull-Up/Pull-Down Resistor	Load Drive Capability IoL
No resistor	3.0 mA
With $50 \mathrm{k} \Omega$ pull-up resistor	9.0 mA
With $5 \mathrm{k} \Omega$ pull-up resistor	$12.0 \mathrm{~mA}$
With $50 \mathrm{k} \Omega$ pull-down resistor	24.0 mA

Signal Level
CMOS
:---:
Oscillator
:---:

A CMOS-level interface block is available as an output interface-level block. This block connects to the current CMOS LSI, and outputs voltages of the same level as the power supply voltage. In addition, an N-ch open-drain block with a fail-safe function is also available. This block is provided with a function that protects against over voltage, ensuring there is no conduction to the power supply of the gate array even if signals are input when the power supply voltage of gate array is OFF. However, as with the current N-ch open-drain block, this block cannot be clamped with a voltage higher than that of the power supply voltage.

An oscillator and a low noise buffer for reducing noise generation are also available.
In a CMOS circuit, if an input signal is in a state whereby the level of input is unstable (floating level), excessive through current will flow, and a noise signal will be input into the circuit, resulting in malfunction. A buffer with a pullup or pull-down resistor must be used for pins that may be open on the substrate. In the CMOS-N5 Series, $5 \mathrm{k} \Omega$ pullup resistors are also available for TTL-type bus line.

2.5 Development Flow

The following figure shows the development flow of a CMOS gate array.
^ Flow 1: Development procedure and interfacing

Note Only when necessary.

Flow 2: Development flow

Flow 3: Front-end detailed flow

Note STADRC is only required when sign-off performed by STA.

2.6 OPENCAD Configuration Tools

The following tools can be selected in accordance with the user environment.

Cautions 1. Refer to the user's manuals in the OPENCAD Series for the latest versions of the OPENCAD configuration tools.
2. Some functions may not be supported, so check before using OPENCAD.

Notes 1. Sign-off tool
2. Tool not supported in HP ${ }^{\text {TM }}$ version
3. Tool supported individually

Remark Platform: Sun ${ }^{\text {TM }}\left(\right.$ Solaris $^{\text {TM }}$)/HP (HP-UX ${ }^{\text {TM }}$) GUI: \quad X11R5/Motif ${ }^{\text {TM }} 1,2$

Gate array development is a cooperative effort by the user and NEC Electronics. The user is responsible for the steps from system and circuit design through simulation. NEC Electronics is responsible for providing design information, supporting the user in designing the circuit, and the steps after simulation.

The transfer of development work from the user to NEC Electronics is called interfacing. The interface level is divided into the following two depending on what data is to be provided from the user to NEC Electronics.

(1) Circuit diagram level interface

A circuit diagram designed with 74LS or NEC Electronics' gate array blocks is submitted to NEC Electronics and NEC Electronics performs the steps after circuit simulation.
NEC Electronics will provide the user with the results of design rule checking and circuit simulation, which must be confirmed and approved by the user.
(2) Simulation level interface

The user performs circuit design and simulation work using various EWS (engineering work stations) and CAD system simulators, and NEC Electronics takes over the rest of the development work (such as automatic placement and routing and final simulation).

At either interface level, the user may consult NEC Electronics about items NEC Electronics has provided, as well as which tools are presently available.

2.7 List of Interface Data

Embedded array and cell-based IC descriptions should be disregarded when referencing this list.

Caution There may be changes to the data depending on the edition of OPENCAD, so be sure to contact NEC Electronics before commencing design.

Rev.1.8 12 Dec 2000

		File Type and Name	SIMULATOR							
			V.sim			Verilog				
Check result file	Netlist rule check	(.gatedrc)	(0) (t1)			© (t1)				
	alb check	(.ALBchk)	() ${ }^{\text {Note }} 10$ (t 3)			() ${ }^{\text {Note }} 11$ (t 3)				
	PIN check	"NO ERR" screen copy	(0) (t1)			(0) (t1)				
	SCAN check	(.scanchk)	$\bigcirc(t 1)$			$\bigcirc(t 1)$				
	BSCAN check	(.bscanchk)	O (t1)			O (t1)				
	Sim result MIN. \& MAX. (fraction of pattern number)		.slg	.tpe	.iomoduchk	. log	.bus	ovprd	.iochk	.trcpr
		DC test pattern (up to 32 K patterns)	© ${ }^{\text {Note } 12}$	() ${ }^{\text {Mote } 12}$	(0) ${ }^{\text {Note } 12}$	() ${ }^{\text {Note } 15}$	() ${ }^{\text {Note }} 15$	© ${ }^{\text {Note }} 15$	() ${ }^{\text {Note }} 15$	() ${ }^{\text {Note } 15}$
		Function test pattern	$\mathrm{O}^{\text {Note } 13}$	$\bigcirc^{\text {Note } 13}$	$\mathrm{O}^{\text {Note 13 }}$	$\mathrm{O}^{\text {Note } 16}$	$\mathrm{O}^{\text {Note } 16}$	$\bigcirc^{\text {Note } 16}$	$\bigcirc^{\text {Note } 16}$	$\mathrm{O}^{\text {Note } 16}$
		High-speed function test pattern	$\mathrm{O}^{\text {Note } 14}$	$\bigcirc^{\text {Mote } 14}$	$\mathrm{O}^{\text {Note } 14}$	$\mathrm{O}^{\text {Note } 17}$	$\bigcirc^{\text {Note }} 17$	$\bigcirc^{\text {Note }} 17$	$\bigcirc^{\text {Note }} 17$	$\mathrm{O}^{\text {Note } 17}$
TESTACT	DFT database file	(dft_db)	\bigcirc			\bigcirc				
	DFT pin location file	(dft-set)	\bigcirc			\bigcirc				
	Test bus connection check pattern	testbus.cpt	\bigcirc			\bigcirc				
	BSCAN circuit verification pattern	bspat.cpt	\bigcirc			\bigcirc				

Rev.1.8 12 Dec 2000

Notes 1. There must be a description of I/O modulation in the timing of ALBATROSS.
2. Refers to input modulation and high-speed function test.

3 to 11. Select one for each.
12 and 14 or 15 and 17. Required if high-speed function test is requested.
12 and 13 or 15 and 16. Required if test patterns exceed 32 K .

Remarks 1. © : Required, \bigcirc : When necessary
2. (t 1): When test run is requested ($P \& R \rightarrow$ SDF)
(t 2): When test run is requested $((\mathrm{t} 1) \rightarrow$ Critical path confirmation)
$(\mathrm{t} 3)$: When test run is requested $((\mathrm{t} 1) \rightarrow$ Simulation)

2.8 ASIC Product Development Information

An example and the method for describing information related to ASIC product development is included here (as a checksheet).

Check (black out) the appropriate box. For items with only one box, check the box if your results agree with the statement.

Example There were no errors
\rightarrow Checked (blacked out) means that there were no errors.
\rightarrow Unchecked (left white) means that there were errors.

Cautions 1. Be sure to check with NEC Electronics that the ASIC product development information (checksheet) you are planning to use is the latest version. Do not use this description example for actual interfacing.
2. The ASIC product development information in this document includes descriptions for other series since this information is a common example for gate array products.
3. The ASIC product development information described here is provided to enable understanding of what kind of items should be checked, and is not intended to provide release-related information.

2.8.1 ASIC product development information (checksheet)

(Request No.: SBE-XXX-0001 Division Answer Date: April 15, 2003)
In case of special request, please submit a special request form including division answer as the interface document.
<8> Special signature
\square No $■$ Yes
4. Interface materials

The materials required when interfacing are listed below.

NEC sales department ${ }^{\text {Note }}$

Sales department:	$1^{\text {st }}$ Sales Dept.
Name of contact:	S.D.Smith
TEL:	$+\mathbf{+ 8 1 - 3 - X X X X - X X X X}$
FAX:	

Note The names of the NEC distributor and sales department must be include

1. Enter the product name.
2. Enter the company, department, name of contact, and contact details.
3. Enter the following information.
$<1>$ Requested ES delivery date and number of samples
<2> Application
<3> Interface level.
$<4>$ Design tool to be used and its version
<5> Hardware to be used
<6> Package pin count and type
$<7>$ Select either the [Yes] or [No] check box for special request, and if [Yes] is selected, enter the request number and the division answer date.
$<8>$ Whether there is a special signature
4. Enter the file name and date for the following materials which are to be submitted when interfacing.

Resubmit these materials whenever data is modified.
<1> Enter the dif file name and creation date.
<2> Enter the netlist data file name, data type, medium, format, and the creation date.
$<3>$ Since the only test pattern data type is ALB, nothing need be entered for this item.
$<4>$ There is no timing file, so this is not applicable (this information is included in ALB).
$<5>$ Enter the date that GateDRC was executed with the final netlist data.
$<6>$ Indicate the simulator type.
$<7>$ Enter the date the simulation result check document was created.
$<8>$ If performing path analysis, enter the analysis tool name, script file name, and script file creation date.
<9> Name of net from clock input pin to CTS block or file name. This is required as there is an adjacent placement prohibition specification in CMOS-10HD.

Remark Enter the file name for $\langle 3>$ in the table under (b) Test pattern information in (23) Test pattern. For C3, confirm the necessary files later.

Enter the name of the NEC distributor and NEC sales department.
5. Product details (C2-level form)

Please fill out the following. This data will be used for designing LSIs and creating delivery specifications.
Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(1) Are there any additional power supplies? .. \square YES \square NO Additional $V_{D D} \quad \mathbf{1}$ _Additional GND__2_Additional VD(D)5_3_(for other than CMOS-10HD) Additional $V_{D 1} \underline{\mathbf{1}} \quad$ Additional $V_{D 2} \quad \mathbf{0} \quad$ Additional GND _2 \quad (for CMOS-10HD)
(2) Is there an oscillator block? ... \square YES \square NO

Block name:_ OS11, OS07, F093			Frequency:	20	MHz
Oscillation input pin	CIN	Pin No.	110		
Oscillation output pin	CEN	Pin No.	112)		
Oscillation enable input pin	COUT	Pin No.	(111)		

- If there is an oscillator block, an oscillation stop function is included

In the case of YES, for all user patterns, do not make the oscillation input signal the RZ signal and do not set the expected value " X " (undefined) for the oscillation output signal; fix the input of the stop control pin to 0 .
(3) Conditions
(a) Simulation
\square cmos_1.8 V \square cmos_2.5 V \square cmos_3 V \square cmos_3.3V \square cmos_5 V $\square t t l _3.3 \mathrm{~V} \square \mathrm{ttl}$ 5 V
(b) Electrical specifications

(4) Operating frequency Input fmax.

- Output buffer external load capacitance is within the recommended range ${ }^{\text {Note }}$
(5) Simultaneous operation
- 3 GND pin determination method
\square Total chip level determination method \square Simple determination method \square Detailed determination method
- According to the determination results, simultaneous operation was satisfiedNote \qquad ..■
(6) Power consumption

Calculation result Total power: $\mathbf{5 2 3} \mathrm{mW}$ Maximum allowable power consumption: $\mathbf{6 8 0} \mathrm{mW}$

- The powerconsumption is within the allowable range ${ }^{\text {Note }}$
- When executing a detailed calculation (PwL), calculation is made with $T_{J}=125$ for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ or $\mathrm{T}_{J}=100$ for $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(\left(125-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})} \div \theta_{\mathrm{ja}}\right)\right.$ or $\left.\left(100-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})} \div \theta_{\mathrm{ja}}\right), \mathrm{T}_{\mathrm{A}(\mathrm{MAX})} \geq 40^{\circ} \mathrm{C}\right)$ (Please answer when implementing detailed calculation (PwL).)
(7) X-propagation simulation was performed ${ }^{\text {Note }}$ \qquad \square
(8) There were no CTS Check result errors (for CTS-mounted products only) ${ }^{\text {Note }}$................... $\square \square \square$ No CTS When CTS and a digital PLL are incorporated, submit the .rpt file.
- Are there no more than 4 CTS systems? (CMOS-10HD only. Excluding CTS for SCAN) .. If there are more, contact NEC Electronics (submit a special request).
(9) There were no timing errors \qquad
Make checks based on the simulation result check document. If the X-propagation simulation item checkbox was unchecked, simulation will be performed with no effect on the output pins even if a timing error occurs, so be sure to execute simulation. If there is a timing error, it will be necessary to modify the circuits and the test pattern to avoid the output of such an error.
Note that although it is possible to accept only pseudo-errors, whose contents do not affect the output, it is anticipated that test bugs may be caused by check omissions. Bear in mind that in such cases, NEC Electronics may require users to investigate the origin of these bugs.

5. Enter the following information.
(1) Indicate whether there are any additional power supplies, and if YES, the number of additional VDD or GND pins. The category is divided into either CMOS-10HD and other than CMOS-10HD. Please enter the answer in the correct category.
(2) Indicate whether there is an oscillator block, and if YES, the name, frequency, and input/output/enable pin names and numbers. In the case of YES, also indicate whether an oscillation stop function is included. For all user patterns, do not make the oscillation input signal the RZ signal and do not set the expected value " X " (undefined) for the oscillation output signal. Fix the input of the stop control pin to 0.
(3) Indicate the type of simulation, T_{A} (temperature range), and V_{DD} (supply voltage range).
(4) Enter the operating frequency.

Input fmax.
Enter the name of the pin at which the maximum operating frequency is input, the frequency, and the duty ratio.
Output fmax.
Enter the name of the pin at which the maximum operating frequency is output, the frequency, and the load capacitance.
Output minimum pulse width
Enter the name of the pin at which the maximum operating frequency is output, the minimum pulse width, and the load capacitance, and indicate whether the minimum pulse width is POS or NEG.

- Check and indicate whether the output buffer external load capacitance is within the recommended range. The following restrictions apply for the maximum operating frequency.

CMOS-10HD:	$66 \mathrm{MHz}(1.8 \mathrm{~V}), 133 \mathrm{MHz}(2.5 \mathrm{~V})$
CMOS-9HD, EA-9HD:	100 MHz
CMOS-N5:	$60 \mathrm{MHz}(5 \mathrm{~V}), 33 \mathrm{MHz}(3.3 \mathrm{~V}), 25 \mathrm{MHz}(3 \mathrm{~V})$
Other series:	fmax. of output buffer

(5) Check and indicate which determination method:3 GND pin determination or total chip level simple determination/ detailed determination was used for simultaneous operation.
Check and indicate whether simultaneous operation is satisfied according to the determination results. If it is not satisfied, list countermeasures.
(6) Calculate the power consumption using the design manual and enter the result. Also enter the maximum allowable power consumption of the package, based on the design manual, and indicate whether it is within the allowable range. If it is out of range, list countermeasures.
For a detailed calculation, execute the calculation with the T_{J} value corresponding to T_{A}.

$$
\begin{array}{lll}
\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} & \mathrm{PWL}_{\mathrm{WL}}=125-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})} \div \theta \mathrm{jja} & \text { Condition: } \mathrm{T}_{\mathrm{A}(\mathrm{MAX} .)} \geq 40^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} & \mathrm{PWL}_{\mathrm{WL}}=\left(100-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})} \div \theta_{\text {ja }}\right) & \text { Condition: } \mathrm{T}_{\mathrm{A}(\text { MAX. })} \geq 40^{\circ} \mathrm{C}
\end{array}
$$

(7) Indicate whether X-propagation simulation was performed when executing simulation. Note that X-propagation simulation must be performed. If it was not performed, give reasons.
(8) For CTS-incorporated products, execute CTS Check and describe the confirmed results.

- For CMOS-10HD, check that there are no more than 4 CTS systems (excluding CTS for SCAN).
(9) Based on the simulation result check document, indicate whether there were any timing errors.
(10) When bidirectional pins are used, there is no circuit designed in such a way that these signals enter the clock directly after the signals are re-input internally via a bidirectional pin input buffer in output mode
\qquad

If this kind of circuit configuration exists, depending on the ringing, the internal circuit that receives these input signals may malfunction, causing testing problems. This is especially the case if these input signals directly enter the clock, so users are advised to take countermeasures in line with the specifications in the design manual.

- If this box is unchecked, countermeasures must be taken, and these measures must be checked and approved by NEC Electronics via a special request, etc.
(11) For CMOS-6, 6A, 6S, 6V, 6X, 8:

Is a TTL18 mA type output buffer used?
For CMOS-8L, 5 V interface:
Is an $18 \mathrm{~mA}, 24 \mathrm{~mA}$ type output buffer used [2-cell configuration]? \square NO ■YES
(12) Is there a RAM block? .. \square NO ■ YES

- In the case of YES, please fill out 2.8.2 RAM block.
(13) Is there a ROM block?.. \square NO ■YES
- In the case of YES, please fill out 2.8.3 ROM.
(14) Is there a high-speed function test?YES
- In the case of YES, please fill out 2.8.4 High-speed function test.
(15) Is there a GTL, PECL, HSTL, PCI, or LVDS block?
- In the case of YES, please fill out 2.8.5 GTL, PECL, HSTL, PCI, LVDS block.
(16) Is there a digital PLL? \qquadNO YES
- In the case of YES, please fill out 2.8.6 DPLL block.
(17) Is there a megamacro?
- In the case of YES, please fill out 2.8.7 Megamacro.
(18) Use for both scan path and boundary scan.

NO ■YES

- In the case of YES, enter information regarding 2.8.8 Alternate use as scan path and boundary scan.
(19) Is a scan path (SCAN) used?
$\square \mathrm{NO}$
YES
- In the case of YES, please fill out 2.8.9 Scan path. However, during alternate use as BSCAN, nothing need be entered.
(20) Is a boundary scan (BSCAN) used? \qquad NO YES
- In the case of YES, please fill out 2.8.10 Boundary scan. However, during alternate use as SCAN, nothing need be entered.
(21) For EA-9HD, is a bus folder (F098) used for all internal 3-state output pins? \qquad YES NO
- In the case of NO, did you check beforehand with the person in charge of the EA-9HD Series in NEC Electronics whether the bus floating prevention circuit is properly configured and received OK?
(22) Is an internal 3-state output block used (except EA-9HD)? \qquad $\square \mathrm{NO}$ YES
- In the case of YES, it has been confirmed that the bus floating prevention circuit has the correct configuration
(10) Based on the design manual, confirm that there is no such circuit configuration.

If there is such a circuit configuration, the fact that countermeasures have been taken in line with the measures recommended in the design manual must be checked and approval given by NEC Electronics via a special request, etc., before interfacing.
(11) Indicate whether there is an output buffer with a 2-cell configuration.
(12) Indicate whether there is a RAM block.
(13) Indicate whether there is a ROM block.

(14) Indicate whether there is a high-speed function test.
(15) Indicate whether there is a GTL, PECL, HSTL, PCI, or LVDS block.
(16) Indicate whether there is a digital PLL.
(17) Indicate whether there is a megamacro.
(18) Select whether or not alternate use for both scan path and boundary scan.
(19) Indicate whether a scan path (SCAN) is used.
(20) Indicate whether a boundary scan (BSACN) is used.
(21) Indicate whether a bus folder (F098) is used (EA-9HD only).

In the case of YES, confirm that a bus folder (F098) is used for all internal 3-state output pins.
If [NO] is selected, check beforehand with the person in charge of the EA-9HD Series in NEC Electronics whether the bus floating prevention circuit is properly configured and receive OK.
(22) Indicate whether there is an internal 3-state output block (for other than EA-9HD).

In the case of YES, confirm that the bus floating prevention circuit has the correct configuration.
If the prevention circuit does not have the correct configuration, through current ldo becomes abnormal when selecting the tester.
Be careful because this problem cannot be detected by the tool.

Note that because (11) to (20) in the page indicated on the left are examples, YES has been marked for all entries.
(23) Test pattern:
(a) The following restrictions have been satisfiedNote 1 \qquad
[CMOS-N5, 9HD, 10HD, EA]
[CMOS-8L] (OPENCAD V5.4 or earlier)
[CMOS-6, 6A, 6S, 6V, 6X, 8, 9] (OPENCAD V5.3 or earlier)

Number of Pins	Minimum Number of Test Patterns Per Pin (Patterns for DC Measurement Only)	Total Number of Test Patterns
Less than 145 pins	150 patterns	128 K patterns (with SCAN) Note 2
		256 K patterns (without SCAN) Note 2

Notes 1. If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
2. The number of DC patterns is 32 K max. for all, except for 257 or more pins of EA-9HD. If the DC pattern exceeds 32K, the patterns for DC measurement are up to 32 K . Therefore, create patterns so that DC measurement can be detected within 32 K insofar as possible.
The pattern submitted to NEC Electronics can also be a single pattern exceeding 32K.

Example:

In the case of a 56 K DC pattern, the pattern for DC measurement is 1 to 32 K . Therefore, even if there are signal changes for $32001-56 \mathrm{~K}$, this is not reflected to DC measurement. Patterns after 32 K are handled as LFT (same as 1 to 56K LFT pattern).

In the case of 257 or more pins in EA-9HD, the number of DC patterns is 64 K max. If the DC patterns exceed 64 K , the patterns for DC measurement are up to 64 K . Therefore, create patterns so that DC measurement can be detected within 64 K insofar as possible.
The pattern submitted to NEC Electronics can also be a single pattern exceeding 64K. Moreover, the number of patterns for (each) high-speed function test is 32 K max. regardless of the series and pin count.
(23) Enter the following information about the test patterns.
(a) Indicate that the restrictions regarding the number of test patterns have been satisfied. If they are not, check with NEC Electronics as the tester restrictions may be unsupportable.

The restriction on the minimum number of test patterns per pin only applies to patterns for DC measurement.

Remark The number of DC patterns is a single pattern of 32 K max., except for 257 or more pins of EA$9 H D$. If the DC pattern exceeds 32 K , the pattern check is up to 32 K .
Therefore, create patterns so that DC measurement can be detected within 32 K insofar as possible.
The pattern submitted to NEC Electronics can also be a single pattern exceeding 32K.

Example

In the case of a 56 K DC pattern, the pattern for DC measurement is 1 to 32 K . Therefore, even if there are signal changes for 32001-56K, this is not reflected to DC measurement.
Patterns after 32 K are handled as LFT (same as 1 to 56 K LFT pattern).

In the case of 257 or more pins in EA-9HD, the number of DC patterns is a single one of 64 K max.
If the DC patterns exceed 64 K , pattern check is up to 64 K .
Therefore, create patterns so that DC measurement can be detected within 64 K insofar as possible.
The pattern submitted to NEC Electronics can also be a single pattern exceeding 64K.
Moreover, the number of patterns for (each) high-speed function test is 32 K max. regardless of the series and pin count.

Pattern check up to OPENCAD V5.3 and patter check from OPENCAD V.5.4 or later differ.

Up to OPENCAD V5.3	LOGPAT	cptchk
	ALB	cptchk, albchk
From OPENCAD V5.4 or later	ALB only	albchk

(b) Test pattern information
<1> Please enter test pattern information in the following table (for OPENCAD V5.3 or earlier).

Test Pattern Data File Name	Timing Data File Name	Number of Patterns	Pattern Period(T) Strobe Position(ST)	Check One						
				DC	LFT	HighSpeedNote 2	BSCAN Note 3	DPLL Note 4	$\begin{gathered} \text { Mega- } \\ \text { macroNote } 4 \end{gathered}$	SCAN Note 4
DC.nlp	DC.alb	20,000	$\begin{aligned} & \mathrm{T}=200 \mathrm{~ns} \\ & \mathrm{ST}=199.99 \mathrm{~ns} \end{aligned}$	$\sqrt{\text { Note } 1}$						
LFT1.nlp	LFT.alb	10,000	$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$		\checkmark					
LFT2.nlp	LFT.alb	10,000	$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$		\checkmark					
FCT.nlp	FCT.alb	20,000	$\begin{aligned} & \mathrm{T}=300.00 \mathrm{~ns} \\ & \mathrm{ST}=299.99 \mathrm{~ns} \end{aligned}$		\checkmark					
			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$					-		
			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
			$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							

Notes 1. Input the DC pattern in this column. In case of alternate use with LFT pattern, $\sqrt{ }$ marks in LFT column are not required. If the pattern period is not 200 ns , enter the pattern period and reason for change below:
Pattern period: $\quad 300 \mathrm{~ns}$ Reason for change: Because the MAX delay is 280 ns
2. Check the High-Speed column for high-speed function test patterns.
3. Set the BSCAN pattern period to 300 ns or more.
4. Check these columns for the setting pattern and initialization pattern.

Remarks 1. The number of patterns is DC + LFT + High-Speed + BSCAN + DPLL + Megamacro, totaling no more than 20.
2. For the ALBATROSS interface, enter the ALBATROSS file name under File Name in the Test Pattern Data column. If there is an I/O modulation specification, enter the strobe file name for the timing data file name. Place a dash in this column if there is no I/O modulation specification.
(b) Test pattern information
<1> Enter test pattern information as shown below (for OPENCAD V5.3 or earlier)
Enter the file name and number of patterns for all test pattern data, and check the column corresponding to the pattern data type.
If the pattern period and strobe position are other than 200 ns and 199.99 ns , respectively, enter the actual values.
If there is an I/O timing specification, also enter the name of the timing data file. Place a dash ("-") if there is no I/O timing specification.
Be sure to enter the DC pattern in the first row, and if its pattern period is not 200 ns , enter the pattern period and the reason for the change in the column indicated by Note 1.

For the ALBATROSS interface, enter the ALBATROSS file name for the test pattern data file name, and enter "-" in the Timing Data File Name column because the timing data is not necessary when I/O modulation is not specified. Note that the number of patterns, i.e. DC + LFT + high-speed function test + BSCAN + DPLL, is 20 max., including mega macro initialization patterns. Regarding the mega macro initialization patterns, timing specification is prohibited, so enter "-" In the timing data file name column.

Resubmit this information whenever data is modified.
<2> Please enter test pattern information in the following table (for OPENCAD V5.4 or later).

Test Pattern Data File Name	Number of Patterns	$\begin{gathered} \hline \text { Pattern Period(T) } \\ \text { Strobe Position(ST) } \end{gathered}$	Check One						
			DC	LFT	HighSpeedNote 2	$\begin{gathered} \hline \text { BSCAN } \\ \text { Note } 3 \end{gathered}$	$\begin{aligned} & \hline \text { DPLL } \\ & \text { Note } 4 \end{aligned}$	MegamacroNote 4	SCANNote 4
DC.nlp	20,000	$\begin{aligned} & \mathrm{T}=200 \mathrm{~ns} \\ & \mathrm{ST}=199.99 \mathrm{~ns} \end{aligned}$	$\sqrt{ }{ }^{\text {Note } 1}$						
LFT1.nlp	10,000	$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$		\checkmark					
LFT2.nlp	10,000	$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$		\checkmark					
FCT.nIp	20,000	$\begin{aligned} & \mathrm{T}=300.00 \mathrm{~ns} \\ & \mathrm{ST}=299.99 \mathrm{~ns} \end{aligned}$		\checkmark					
		$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$,				
		$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
		$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
		$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
		$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							
		$\begin{aligned} & \mathrm{T}= \\ & \mathrm{ST}= \end{aligned}$							

Notes 1. Input the DC pattern in this column. In case of alternate use with LFT pattern, $\sqrt{ }$ marks in LFT column are not required. If the pattern period is not 200 ns , enter the pattern period and reason for change below:
Pattern period: $\mathbf{3 0 0}$
ns Reason for change: Because the MAX delay is 280 ns
2. Check the High-Speed column for high-speed function test patterns.
3. Set the BSCAN pattern period to 300 ns or more.
4. Check these columns for the setting pattern and initialization pattern.

Remark The number of patterns is DC + LFT + High-Speed + BSCAN + DPLL + Megamacro, totaling no more than 20.
<2> Enter test pattern information as shown below (for OPENCAD V5.4 or later)
Enter the file name and number of patterns for all test pattern data, and check the column corresponding to the pattern data type.
If the pattern period and strobe position are other than 200 ns and 199.99 ns , respectively, enter the actual values.
Be sure to enter the DC pattern in the first row, and if its pattern period is not 200 ns , enter the pattern period and the reason for the change in the column indicated by Note 1.

Note that the number of patterns, i.e. DC + LFT + high-speed function test + BSCAN + DPLL, is 20 max., including mega macro initialization patterns.

Resubmit this information whenever data is modified.

(c) and (24) to (27) below are for OPENCAD V5.3 or earlier, and (28) and (29) are for OPENCAD V5.4 or later.
(c) Is there a timing specification? \qquad .. If there isn't, $<1>$ to $<6>$ below do not need to be checked.
$<1>$ The specified number of timing phases is 6 or less, including the basic timing ${ }^{\text {Note }}$ \qquad
<2> The timing variation (time difference at the change point) of each phase is 10 ns or more ${ }^{\text {Note }}$ \qquad ${ }^{-\ldots . . .}$
<3> The I/O switching of the bidirectional buffer is performed at the basic timing (Not applicable when I/O modulation is used) ${ }^{\text {Note }}$ \qquad
$<4>$ There is no contention when the time change is identical for each timing phase ${ }^{\text {Note }}$...
$<5>$ When there is an RZ signal specification, the clock is not output directly to external pins ${ }^{\text {Note }}$
<6> When there is an RZ signal specification, there are no parts in which I/O switching of the bidirectional buffer is performed by this signal (Not applicable when I/O modulation is used) ${ }^{\text {Note }}$
(24) There are no errors in CPTchkNote \qquad

Bear in mind that because the tester cannot measure the level of pins at which an "HL" or "input change" error occurs in the DC pattern, defective products may be mixed in the samples at shipment. However, the above messages do not apply for the test pins of NEC Electronics that are not used alternately as user pins. For the Verilog products, be sure to correct the "Hi-Z input" error to either " 1 " or " 0 ".
(25) For the ALBATROSS interface,
(a) albchk was executed ${ }^{\text {Note }}$.

If the above is checked, there were no errors in the albchk execution ${ }^{\text {Note }}$ \qquad
Be sure to provide the pattern number fraction .albchk file.

Bear in mind that because the tester cannot measure the level of pins at which an "Value (/Transition) is not appeared" or "Don't care PIN exist" occurs in the DC pattern, defective products may be mixed in the samples at shipment. However, the above messages do not apply for the test pins of NEC Electronics that are not used alternately as user pins.
(26) When I/O modulation is specified
(a) It is confirmed that I/O modulation is not specified for 2 phases or more ${ }^{\text {Note }}$ \qquad
(b) There were no errors in the I/O modulation check ${ }^{\text {Note }}$ \qquad
(c) "*ALBATROSS TOP cell name ver4.0 ;" was described in the start line of the strobe ALBA file Note
Be sure to provide the strobe ALBA file.
(d) When clock or modulation is specified, it is reflected in the strobe ALBANote \qquad Be sure to provide the pattern number fraction .iomoduchk file.
(27) When DPLL is incorporated

There were no errors in the DPLL mode check ${ }^{\text {Note }}$
Please submit the file .dpmodechk, which contains all the patterns to be interfaced, to NEC Electronics. Patterns output by Create DPLL Connection Pattern used for checking the connection of a DPLL do not have to be checked. However, be sure to check whether the initialization pattern input when the pattern for checking the connection of a DPLL is created has an error or not.

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(c) If there is a timing specification, indicate whether the number of timing phases is 6 or fewer, including the basic timing, whether the timing variation of each phase is at least 10 ns , whether the bidirectional buffer I/O switching is carried out at the basic timing, and whether there is conflict when the time change is identical for each timing phase. $<1>$ to $<6>$ must all be checked. If I/O modulation is used, $<3>$ and $<6>$ are not applicable.
(24) Indicate whether there are any errors in CPTchk, referring to the CPTchk execution results. If there are errors, correct them in line with the contents of the box at the bottom of the page.
(25) For the ALBATROSS interface, indicate whether albchk was executed, and if it is executed, whether any errors occurred. If it is not executed, list the reasons why it is not necessary to execute.

(26) When an I/O modulation is specified, check items (a), (b), (c), and (d). Moreover, these boxes must all be filled in.
(27) When a DPLL is incorporated, check that there are no errors in the DPLL mode check of Simulation. If the box is left unchecked, list the reasons why the error(s) will cause no problem.
(28) ALBATROSS
(a) ALBA was created using Create Interface ALBA File of Pattern Utilities ${ }^{\text {Note }}$ \qquad

- If so, It is confirmed that there are no problems with the test type of the created ALBA Note \square Test type = DC only for DC measurement patterns.
(b) Is there an I/O modulation specification? [Must indicate] \qquad If there is, check <1> to <3> below.
$<1>$ It is confirmed that I/O modulation is not specified for 2 phases or moreNote \qquad
<2> The IO_MODULATION ALBA file was input when creating "create interface ALBA" Note \qquad
$<3>$ When clock or modulation is specified, it is reflected in the IO_MODULATION ALBA Note.
(c) albchk was executedNote

If the above box is filled in, there were no errors in the albchk executionNote
Be sure to provide the pattern number fraction .albchk file.

Bear in mind that because the tester cannot measure the level of pins at which an "Value (/Transition) is not appeared" or "Don't care PIN exist" occurs in the DC pattern, defective products may be mixed in the samples at shipment. However, the above messages do not apply for the test pins of NEC Electronics that are not used alternately as user pins.
(d) Was an I/O modulation check executed?Note

Required for I/O contention error even if I/O modulation is not specified.
If the above is checked, there were no errors in the I/O modulation check execution \qquad ..
Be sure to provide the pattern number fraction .iomoduchk file.

Were any errors that occurred control modulation errors, and the circuit configuration not a configuration such as $\mathrm{PCl} ?^{\text {Note }}$

Unless circuit configuration is a configuration such as PCl , control modulation errors are handled as pseudo errors in OPENCAD V5.4.1 or later.
(29) When DPLL is incorporated

There were no errors in the DPLL mode check ${ }^{\text {Note }}$ \qquad Please submit the file .dpmodechk, which contains all the patterns to be interfaced, to NEC Electronics. Patterns output by Create DPLL Connection Pattern used for checking the connection of a DPLL do not have to be checked. However, be sure to check whether the initialization pattern input when the pattern for checking the connection of a DPLL is created has an error or not.

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(28) ALBATROSS

Check that ALBA was created using the Create Interface ALBA File function of Pattern Utilities. Patterns not created using this function cannot be interfaced.

Moreover, check if there is no test type problem. Test type = DC only for DC measurement patterns. Indicate whether albchk was executed, and if it is executed, whether any errors occurred. If it is not executed, list the reasons why it is not necessary to execute.
Indicate whether the I/O modulation check was executed, and if it was, check and indicate that there were no errors.
Unless the circuit configuration is a configuration such as PCI , control modulation errors are handled as pseudo errors.
Check that all errors were control modulation errors and that the circuit configuration is not a configuration such as PCI.
(29) When a DPLL is incorporated, check that there are no errors in the DPLL mode check of Simulation. If the box is left unchecked, list the reasons why the error(s) will cause no problem.

2.8.2 RAM block

(1) About the RAM block
(a) Blocks used

Block Type (Function)	Number of Bits	Number of Words	Number of Blocks Used
RJ8F	8	256	1
RJ8H	8	512	1

(b) Compiled RAM is used \qquad
(c) If compiled RAM is used, there are an even number of wordsNote
(d) All RAMs used are RAM with BIST (use of basic RAM only is prohibited) Note \qquad
(e) The TE pin is directly accessed without inverting the logic from an external pin in the case of G/A and connected to TEB via an inverter in the case of EANote
(f) In test mode ($\mathrm{TE}=\mathrm{L}$), the TIN and TOUT pins are directly accessed without inverting the logic from external pins ${ }^{\text {Note }}$. \qquad
(g) There is a test output pin (TOUT) provided for each of the RAMs used ${ }^{\text {Note }}$
(h) If multiple RAMs are used, the TE and TIN pins are common to all the RAMsNote
(i) There are no patterns that access non-existent addresses ${ }^{\text {Note }}$ \qquad ■
(This does not apply to cell-based type high-density synchronous compiled RAM)
(j) TE/TEB of RAM for all test pattern data is not in test mode Note \qquad ..
(k) A high impedance prevention circuit for normal mode is includedNote \qquad . \square
If it is not included, be sure to include a prevention circuit, otherwise the tester may malfunction due to current flow, which may adversely affect shipping (embedded array only).
(I) The instance names of the metalization wafer and base wafer are the same \qquad ..■ If they are not the same, submit the instance correspondence of the upper and base wafers (embedded array only).
(m) Enter the names of the RAM test pins.

TE/TEB (1 pin)	TENB
TIN (1 pin)	TESTI

TOUT0, TOUT1

(n) There were no mismatches in the RAM check results ${ }^{\text {Note }}$

All the boxes from (c) to (n) should be checked. Be aware that if one or more of these items are not checked, you may be requested to modify the circuitry at the test program creation stage (final development stage).
(o) Interface data

Submit the .rpi file in addition to normal interface data.

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(1) Enter the following information about the RAM block.
(a) Enter the RAM block type name, as well as the number of bits, number of words, and number of RAM blocks used.
(b) Indicate whether compiled RAM is used.
(c) Odd words are prohibited, so indicate that there is an even number of words.
(d) Check and indicate that all RAMs used are RAM with BIST. Change to RAM with BIST because the use of basic RAM only is prohibited.
(e) Because the TE (TEB) pin must be directly accessed without inverting the logic from an external pin and connected via an inverter in the case of the EA-9, 9HD Series, indicate that this is the case.
(f) In test mode (TE = L), because the TIN and TOUT pins must be directly accessed without inverting the logic from external pins, indicate that this is the case.
(g) Because a test output pin (TOUT) must be provided for each of the RAMs used, indicate that this is the case.
(h) If multiple RAMs are used, because the TE and TIN pins must be common to all the RAMs, indicate that this is the case.
(i) In the EA-9, 9HD Series, because there can be no patterns that access non-existent addresses, indicate that this kind of pattern does not exist.
(j) Check whether TE/TEB is not in test mode for all patterns and mark accordingly.
(k) Check and indicate whether a high-impedance prevention circuit for normal mode is included. If it is not included, be sure to include a prevention circuit, otherwise the tester may malfunction due to current flow, which may adversely affect shipping (embedded array only).
(I) Check and indicate that instance names of metalization wafer and base wafer are the same.

If they are not the same, submit the instance correspondence of the upper and base wafers (embedded array only).
(m) Enter the names of the RAM test pins (TE, TIN, TOUT). (Enter one pin for TE and TIN. Because the TOUT pin cannot be shared in a gate array, enter one pin per RAM used.)
(n) Execute the RAM check and check and indicate that there were no mismatches in the result.

(2) RAM initialization pattern (pattern for RAM single-unit test)

If there were no mismatches in the RAM check results, you do not need to fill out (a) to (e).
(a) If signals pass between the test pins and RAM block via an internal gate, the logic of this internal gate is set to the RAM's test mode in the final pattern of the user-generated test pattern (Note that signals cannot pass through a sequential circuit.) ${ }^{\text {Note }}$ \qquad
(b) If there are bidirectional or 3-state pins (this includes all bidirectional and 3-state pins), enable is secured for these pins in the final pattern of the user-generated test pattern ${ }^{\text {Note }}$ \qquad

- If any bidirectional or 3-state pins are being used as test pins, set the TE and TIN pins to input mode $(\mathrm{EN}=\mathrm{L})$ and the TOUT pin to output mode $(\mathrm{EN}=\mathrm{H})$ in the initialization pattern.
(c) If there is an internal bus in the LSI (this includes all in-circuit internal buses), that bus is neither shorted nor in a floating state in the final pattern of the user-generated test pattern ${ }^{\text {Note }}$ \qquad
(d) If there is a sequential circuit in the LSI (this includes all in-circuit sequential circuits), the output of that sequential circuit is stable in the final pattern of the user-generated test patternNote \qquad

Remark Regarding (d), the output should be stable so as to stabilize the LSl's internal status and improve the accuracy of the RAM test.

If any of (a) to (d) above were not checked, an initialization pattern will be required for that item.
(e) Is an initialization pattern required for any of the above items? \qquad ■YES

- In the case of YES, please enter the following information.
<1> Neither "X" nor "Z" has been entered for the inputNote \qquad
$<2>$ The expected output value is "don't care" Note \qquad
<3> Initialization pattern range 19,990 Pattern to \qquad Pattern

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(2) Enter the following information about the RAM initialization pattern (pattern for RAM single-unit test)
(a) The tester automatically inserts the RAM test pattern behind the DC pattern. Therefore, if signals pass between the RAM test pins and RAM block via an internal gate, because the logic of this internal gate must be set to the RAM's test mode, indicate that this is the case (for the RAM test mode pattern, refer to the design manual).
(b) If there are bidirectional or 3-state pins, because these pins' enable must be secured in the final test pattern of the DC pattern, indicate that this is the case.
(c) If there is an internal bus in the LSI, because bus short or floating states must be suppressed, indicate that the bus is neither shorted nor floating.
(d) If there is a sequential circuit in the LSI, because the RAM test may not be performed normally, indicate that the output of that sequential circuit is stable in the final pattern of the DC pattern.
(e) Indicate whether an initialization pattern is required for any of items (a) to (d). If YES, enter the following information (<1> to <3> below).
(If any of items (a) to (d) were not satisfied, then an initialization pattern is required.)
$<1>$ If either X or Z is input for the RAM initialization pattern input, because a stable test may not be able to be performed, indicate that X or Z has not been input.
<2> Indicate that the status in the RAM initialization pattern is "don't care" (mask status). This must be satisfied, because if the initialization pattern is not masked, the test may be defective.
$<3>$ Because the RAM initialization pattern must be added to the end of the DC pattern, check that this is the case, and enter the pattern range of the RAM initialization pattern (this is not the pattern for checking connection (8 patterns)).

2.8.3 ROM

(1) Blocks used

Block Name (Instance Name)	Block Type (Function)	NINCF File
C\$0010020	J14F	NINCF0
C\$0020030	J14H	NINCF1

Submit the .nincf file in addition to normal interface data.

Enter the following information about the ROM block.
(1) The name (instance name) and type (function name) of the ROM block being used, and the name of the NINCF file corresponding to that block.

Remark Note that in cases when there are multiple ROM blocks of the same type, if the name (instance name) and type (function name) of the ROM block is erroneous, the ROM code merge will not be executed correctly.

2.8.4 High-speed function test

(1) Pattern for high-speed function test

(a) The following conditions are all satisfied Note 1 \qquad $<1>$ The initialization pattern has been entered ${ }^{\text {Note } 1}$ \qquad
$<2>$ The test rate (T) is as follows: $\mathrm{T} \geq 50 \mathrm{~ns}^{\text {Note } 1}$ \qquad
\qquad
$<3>$ There is a strobe at one point onlyNote 1 \qquad
\qquad
$<4>$ The following equation is true: $15 \mathrm{~ns} \leq$ Strobe time $\leq \mathrm{T}-10 \mathrm{~ns}^{\text {Note } 1}$
$<5>$ The specified number of timing phases is 6 or less, including the basic timing ${ }^{\text {Note }} 1$ \qquad
$<6>$ The timing variation (time difference at the change point) of each phase is 10 ns or more ${ }^{\text {Note } 1}$ \qquad
\qquad
$<7>$ The I/O switching of the bidirectional buffer is performed at the basic timing Note 1
<8> Each pattern is initialized within $32 K^{\text {Note } 1}$ \qquad
$<9>$ The following restrictions are satisfiedNote 1 \qquad

Timing Limit Signal Type	Input Delay (to)		Input Pulse Width	
	MIN.	MAX.	MIN.	MAX.
Basic timing	0 ns		-	
NRZ signal	10 ns	$\mathrm{T}-10 \mathrm{~ns}$	-	
RZ signal (clock mode)	10 ns	T-10 ns	144 pins or less: 15 ns 145 pins or more: 10 ns	T-to - 15 ns

(b) How many test patterns are there?

1
(2) Details of simulation using pattern for high-speed function test
(a) Simulation was performed under the following conditions ${ }^{\text {Note }} 1$ \qquad

Condition	Simulation	MIN.
Test cycle (T)	User-specified value	User-specified value
Load capacitance value	$50 \mathrm{pF}^{\text {Note } 2}$	125 pF (bidirectional pins)
		90 pF (output pins)
Strobe time	User-specified value +5 ns	User-specified value -5 ns

(b) There were no mismatches in either MIN. or MAX. simulation Note 1 \qquad

Notes 1. If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
2. The load capacitance value may change in order to improve the accuracy of the actual wiring length.
(1) Enter the following information about the high-speed function test pattern. All these items must be satisfied.
(a) Indicate whether conditions $<1>$ to $<9>$ below are all satisfied.
$<1>$ Indicate that the initialization pattern has been entered in the high-speed function test pattern.
$<2>$ Indicate that the test rate (T) is 50 ns or more.
$<3>$ Indicate that there is a strobe at one point only.
$<4>$ Indicate that the strobe time is 15 ns or more and $\mathrm{T}-10 \mathrm{~ns}$ or less.
$<5>$ Indicate that the specified number of timing phases is 6 or less, including the basic timing.
$<6>$ Indicate that the timing variation (time difference at the change point) of each phase is 10 ns or more.
$<7>$ Indicate that the I/O switching of the bidirectional buffer is performed at the basic timing.
<8> Indicate that each pattern is initialized within 32 K .
<9> Indicate that the restrictions in the table on the left are satisfied.
(b) Enter the number of high-speed function test patterns.
(2) Enter details of simulation using the pattern for high-speed function test.
(a) Simulation must be performed under the conditions in the table on the left, so indicate that this was the case.
(b) Indicate that there were no mismatches in either MIN. or MAX. simulation. The occurrence of a mismatch changes the timing conditions, so ensure that no mismatch occurs.

2.8.5 GTL, PECL, HSTL, PCI, LVDS block

(1) Blocks used

Block Name	I/O	Number of Blocks Used
FIR1	I	1
EGTL	0	1
BGOW	I/O	2

If there are IEN pins, please enter (2) to (8).
(2) All the IEN pins are connected directly to an input buffer ${ }^{\text {Note }}$
 Connect IEN directly to an external buffer (PCI is not a target).
(3) The IEN pins are connected via input buffers FIXA, FUXA, and FIZANote. \qquad Use the dedicated buffers above for the IEN pins (PCl is not a target).
(4) Enter the name of the external pin that controls the IEN pins (PCl is not a target). Pin name GTLIEN
(5) There is at least one pattern in which all the IEN pins are L after pattern 51 of the DC pattern ${ }^{\text {Note }}$
This pattern is required for ldd measurement, so be sure to make at least one pattern L (PCl is not a target).
(6) If 5 V PCI is being used, a 5 V additional power supply specification (VD5-CMOS9HD, VDD5-EA9HD) was made when the dif file was created ${ }^{\text {Note }}$
Be aware that this name differs from the usual additional power supply name. Additional $\mathrm{V}_{\mathrm{D}(\mathrm{D}) 5} \mathbf{3}$ (For CMOS-9HD and EA-9HD, a 5 V additional power supply is required for each edge used)
Pin No. 50, 55, 60
(7) If modulation must be inserted in PCI pins when PCl pins are used, check either (a) or (b).
(a) Pattern was created in I/O modulation specification. \qquad .. \square
(b) Enter the pin names and delay values if modulation needs to be inserted in the waveform.

Pin Name	Delay Value	Pin Name	Delay Value	Pin Name	Delay Value
A01	30				
A02	30				
A03	30				
A04	30				
A05	30				

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.

Enter the following information about the GTL, PECL, HSTL, PCI, and LVDS blocks.
(1) Enter the block name, buffer type (input $=\mathrm{I}$, output $=\mathrm{O}$, bidirectional $=\mathrm{I} / \mathrm{O}$), and number of GTL, PECL, HSTL, PCI , and LVDS blocks used.
(2) All the GTL IEN pins must be connected directly from outside to GTL input buffers, so indicate that this is the case (PCl is not a target).
(3) A dedicated control buffer must be used for the IEN pins, so indicate that this is the case (PCl is not a target).
(4) Enter the name of the external pin that controls the IEN pins (PCI is not a target).
(5) For Idd measurement, there must be at least one pattern 51 patterns or more after the DC pattern in which all the GTL IEN pins are L. Indicate that there is a pattern in which all the IEN pins are L (PCl is not a target).
(6) When a 5 V PCI is included, a 5 V additional power supply $\left(\mathrm{V}_{\mathrm{D}(\mathrm{D}) 5}\right)$ must be specified in the dif file, so indicate that this specification was made when the file was created.
Note that the specification method differs depending on the series. Specify VD5 for the CMOS-9HD Series, and VDD5 for the EA-9HD Series.
(7) When PCl pins are being used
(a) When using I/O modulation, in the case of OPENCAD V5.3, submit strobe ALB. In the case of OPENCAD V5.4 or later, create ALBA by making the device read the IO_MODULATION file with the create interface ALBA function of the pattern utility.
(b) Enter the pin name and delay value for those PCI pins at which it is necessary to insert modulation.

2.8.6 DPLL block

(1) Blocks used

Block Name	Instance name	Number of Blocks Used
F9E6	DPLL1	1

(2) An initialization pattern has been created ${ }^{\text {Note }}$ \qquad
(Execute simulation using the initialization pattern and check that there were no mismatches.)
(3) In the initialization pattern, all the I/O buffer modes have been securedNote
(4) If the DPLL's external pins have I/O buffers, the input pins are fixed to input and the output pins are fixed to output when TMD0, TMD1, (TMD2) are in DPLL unit test mode Note \qquad (Ensure the 3-state buffer is ON.)
(5) Clock (RZ) and modulation (NRZ) are not used for external pin connected to DPLL in the initialization pattern ${ }^{\text {Note }}$ \qquad cation.
(6) All output pins of the initialization pattern except the TOUT pin are "don't care"
(except oscillation output signal) Note \qquad
(7) The DPLL's input and output pins can be accessed directly Note \qquad ... \square If not, verification and approval of special requests, etc., by NEC Electronics are required before interfacing.
(8) The RCLK, TMD0, TMD1, TMD2, TMD3, and TOUT pins do not share signal lines with other signals ${ }^{\text {Note }}$ \qquad
(This does not apply to sharing TMD0 to TMD3 with pins with the same function when using multiple DPLLs)
(a) When using a DPLL together with NEC_SCAN, can the above pins be accessed without being affected by other external pins?
If not, add information to pin fixing file regarding 2.8.8 Alternate use as scan path and boundary scan and 2.8.9 Scan path.
(b) It is confirmed that the output signal of the TOUT pin is not used in the internal circuit Note \qquad
If not, verification and approval of special requests, etc., by NEC Electronics are required before interfacing.
(9) The test pattern (DC, LFT) was generated in through path mode and reset mode only Note
(10) A dedicated buffer (FIOP/FIOQ) is used for RCLK (H01) Note
(11) A function error does not occur as a result of creating and simulating the pattern for checking DPLL connection ${ }^{\text {Note }}$ \qquad
(12) Interface data

Submit the .dpmodechk file and .sig file in addition to normal interface data.

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.

Enter the following information about the DPLL block.
(1) Enter the block names, Instance names and number of DPLL blocks used.
(2) Indicate whether an initialization pattern has been created. An initialization pattern must be prepared.
(3) In the initialization pattern, in order to perform a stable the DPLL test, it is necessary to fix the mode of the I/O buffers not related to the DPLL, so indicate that these buffers have been mode-fixed.
(4) When testing the DPLL, the mode of the external pins must be fixed to input mode when connected to input pins and output mode when connected to output pins, so indicate that these pins are fixed to either input or output (Ensure the 3 -state buffer is ON).
(5) In the DPLL test initialization pattern, clock and modulation cannot be used for the external pin connected to DPLL.
Indicate that a clock (RZ) or modulation (NRZ) is not being used (Do not make a timing specification).
(6) The final patterns of output pins other than TOUT pin in the initialization pattern must all be "don't care" for performing DPLL test. Check if this is the case and mark accordingly.
However, the oscillation output signal when the oscillator is included must not be "don't care".
(7) To test the DPLL, the input control pin and TOUT pin must be accessed directly, so indicate whether the input and output pins can be accessed directly.
(8) Indicate that the RCLK, TMD0, TMD1, TMD2, TMD3, and TOUT pins do not share signal lines with other signals (this does not apply to sharing TMD0, TMD1, TMD2, and TMD3 with pins with the same function when using multiple DPLLs).
(a) When using a DPLL together with NEC_SCAN, check and indicate that the above pins can be accessed without being affected by other external pins.
If they can't, add the required level information of the other external pins to the scan path pin fix file.
(b) Check if the output signal of the TOUT pin is not used by the internal circuit, and mark accordingly. If not, verification and approval of special requests, etc., by NEC Electronics are required before interfacing.
(9) Indicate that the PLL or NEC test mode is not being used in the test pattern (in the user pattern, this only applies to through-path mode or reset mode).
(10) A dedicated buffer must be used for the external pin connecting RCLK. Indicate that this is the case.
(11) Indicate that function errors do not occur when executing simulation after creating the pattern for checking DPLL connection. Use ALBATROSS for OPENCAD V5.4 or later and ALBATROSS or LOGPAT for OPENCAD V5.3 as the pattern format at this time.
(12) Please submit .dpmodechk and .sig for DPLL connection verification simulation, in addition to regular materials, as interface data.
(13) Pin correspondence table
(a) Either submit the .pinf file, or enter (c) pin correspondence table.
(b) If multiple DPLLs are included during .pinf file submission, enter the .pinf file correspondence. DPLL block name_ F9E6 Interface name_DPLL1 .pinf file name_ F9E6.pinf DPLL block name_ F9E4 Interface name DPLL2 .pinf file name_ F9E4.pinf
(c) Pin correspondence table (if multiple DPLLs are included, make several copies of this sheet and enter the information as required.)

DPLL block name \qquad F9E6

Instance name \qquad DPLL1

Pin Name	External Pin Name	Pin No.	Pin Name	External Pin Name	Pin No.
(H01)	PLLRCLK	3	(H15)	-	
(H02)	-	-	(H16)	,	
(H03)	PLLTCK0	5	(H17)		
(H04)	PLLTCK1	6	(H18)		
(H05)	PLLTMD0	7	(H19)		
(H06)	PLLTMD1	8	(H20)		
(H07)	PLLTMD2	9	(N01)	-	-
(H08)	PLLTSMI	10	(N02)	PLLTOUT	12
(H09)			(N03)		
(H10)			(N04)		
(H11)			(N05)		
(H12)			(N06)		
(H13)			(N07)		
(H14)			(N08)		

(13) Pin correspondence table
(a) Either submit the .pinf file, or enter (c) pin correspondence table.
(b) Enter the DPLL block name and interface name corresponding to the .pinf file.
(c) Enter the required information in the pin correspondence table. If multiple DPLLs are included, make several copies of this sheet and enter the information as required.

2.8.7 Megamacro

(1) Blocks used

Block Name	Number of Blocks Used
NA54	$\mathbf{1}$

Remark Always initialize the megamacro after inserting the initialization pattern in each megamacro into the start of test patterns such as DC and LFT.
(2) Which level the CSE pin is fixed? [Must indicate] \qquadH ■ (In the case of H , a BUS configuration for the megamacro outputs is not possible)

- In the case of CSE = L, what is the circuit configuration of the megamacro outputs?
(a) The megamacro outputs have a BUS configuration \qquad
(b) Megamacro outputs are received via a gate and $\mathrm{Hi}-\mathrm{Z}$ disappears. \qquad (This is basically prohibited in EA-9HD. Use a bus holder in this case.)
(3) Direct signals have been added from input pins for all the inputs of the megamacroNote \qquad
(Do not invert signals or pass them through a sequential circuit)
(4) Direct monitoring is possible at output pins for all the outputs of the megamacroNote \qquad
(Do not invert signals or pass them through a sequential circuit)
(5) A megamacro single-unit test setting pattern has been generatedNote \qquad
Ensure that the megamacro single-unit test pattern conforms to next (a) to (f) interface conditions.
(a) All the final patterns of output pins other than those of megamacros are "don't care" (except for the oscillation output signal) Note
(b) Neither clock (RZ) nor modulation (NRZ) is used ${ }^{\text {Note }}$
(c) The I/O buffer mode has been secured ${ }^{\text {Note }}$
(d) The internal circuits other than those of the megamacro have been initializedNote
(e) There is no $\mathrm{Hi}-\mathrm{Z}$ or unknown input ${ }^{\text {Note }}$
(f) There were no mismatches as a result of the simulation before placement and routingNote \qquad
(6) Is a test pattern required for setting (3) and (4) above? \qquad . - YESIn the case of YES, incorporate it in the single unit test setting pattern.
(7) The "Megamacro Single Unit Test Specification Document" from the megamacro design manual has been submitted ${ }^{\text {Note }}$ \qquad
(If not, include it with this manual)
- The required items for the megamacro to be used should be included in the above document.

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.

Remark If there are any details regarding the megamacro test circuit configuration that require special attention, please enter them here.
-

A bidirectional buffer is used and ID0 to ID7 and OD0 to OD7 are used in common.

Enter the following information about megamacros.
(1) Enter the name and number of the megamacro blocks used
(2) The configuration of the megamacro output block differs depending on the level of the CSE pin, so indicate that the level of the CSE pin is fixed to either H or L .
In the case of $\mathrm{CSE}=\mathrm{L}$, indicate whether the megamacro outputs are configured as a BUS or as a gate (refer to the relevant design manual for details of the circuit configuration).
(3) For the megamacro single-unit test using the tester, direct signals must be added from input pins for all the inputs. Check the circuit and indicate that this is the case.
(4) For the megamacro single-unit test using the NEC tester, direct monitoring must be possible at output pins for all the outputs. Check the circuit and indicate that this is the case.
(5) When creating a megamacro single unit test design pattern, check and indicate that items (a) to (f) are all checked.
(6) When performing the megamacro single-unit test, in order to transfer external signals to megamacro inputs without inverting them when gates, etc., have been inserted into the signal lines of the test pins, a setting pattern is required. Indicate whether a test pattern for setting (3) and (4) is required.
(7) Indicate whether the required sections of the "Megamacro Single Unit Test Specification Document" in the megamacro version of each design manual have been copied and submitted with the required items entered (items such as the instance names and pin reference table are required specifications and therefore must be prepared).

For example, if a specific method such as sharing the megamacro data input and output is being used, enter this information.

2.8.8 Alternate use as scan path and boundary scan

(1) Dedicated boundary scan pins were added to difNote \qquad
(2) Have TDI (SIN) and TDO (SOT) been allocated to positions reserved for dedicated scan path pins in each package? (This does not apply to packages with 314 or more pins.) ${ }^{\text {Note }}$ \qquad

- Please enter the relevant pin numbers in the following table for confirmation.
(This does not apply to packages with 314 or more pins.)

BSCAN Pin Name	SCAN Pin Name	Pin No.	BSCAN Pin Name	SCAN Pin Name	Pin No.	
TMS	SMC	-	TRST	-	-	
TDI	SIN	$\mathbf{4 1}$	TCK	SCK	-	
TDO	SOT	$\mathbf{4 2}$				

(3) It is confirmed that no error occurred in scan rule check ${ }^{\text {Note }}$
 The scan rule check execution results have been submitted ${ }^{\text {Note }}$ (If not, please submit them)

- If there is a separate file, pin fix file, or scan bist file, please submit these at the same time.
- Separate file name BUNRI Pin fix file name_KOTEI Scan bist file name TOP.bist.scn
(4) TAP macros (SBCG, SBCL) are placed on top layerNote
(5) The dedicated boundary scan pins are fixed to the following values ${ }^{\text {Note }}$
(These pins must be fixed; otherwise they will be in boundary scan mode)

$$
\mathrm{TCK}=0, \mathrm{TMS}=1, \mathrm{TDI}=1, \mathrm{TRST}=0, \mathrm{TDO}=\mathrm{Hi}-\mathrm{Z}
$$

* The same applies for user patterns such as DC and LFT.
(6) Please enter below the DC measurement pattern of the TAP macro section in the DC test pattern.
(Refer to the design manual for details of the TAP macro DC pattern.)
From_100 pattern to 115 pattern
Be aware that if the DC pattern is not described, the tester cannot measure the level, possibly causing defective products to be mixed in the samples at shipment.
(7) In all BSCAN test patterns, the final value of the patterns of all output pins (pins other than boundary scan dedicated pins) has been set to " 1 ", " 0 ", or "Hi-Z"Note
(This is necessary because undefined is prohibited.)
(8) The following data has been prepared in addition to the usual interface dataNote \qquadbspat.alb, .bscanchk, .set, .bsorder, .bsdl, .scan.init.alb
[Non Test External Pin]
[Non SCAN MACRO Specification]
[Non SCAN BIST]
\rightarrow Required when DPLL or oscillator with oscillation stop function is incorporated
\rightarrow Required when compiled memory, megamacro, and macro have been specified as separate
\rightarrow Specified only when required in an embedded array
(9) .scan.init.alb and .bspat.alb are created from the same boundary scan initialize pattern ${ }^{\text {Note }}$ \qquad
(10) The following restrictions apply when designing the scan path.

Are all the following restrictions observed? Note
<1> Use of an internal bus configuration (F53X, F54X, etc.) is not possible.
<2> External I/O pins and TAP macros must always be placed on the topmost layer.
$<3>$ Do not connect the scan output control buffers (SOEH, SOEL) to the TAP macro test data output (TDO) pin and pins that use the boundary scan register.
The standard fault coverage is 95%. If a fault coverage greater than 95% is required, please contact NEC Electronics prior to interfacing.
Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.

Enter the following information about the scan path and boundary scan.
(1) Indicate whether boundary scan-dedicated pins have been added to the dif file.
(2) When there are fewer than 314 pins, check and indicate that TDI (SIN) and TDO (SOT) have been allocated to positions reserved for dedicated scan path pins in each package. For confirmation, also enter the pin No. of the TDI and TDO pins.
(3) The scan rule check checks the adequacy of the scan circuits and therefore must be executed. Check the execution results and indicate that there were no errors. If an error occurred, fix it, re-execute the scan rule check, and confirm that the error did not reoccur. The execution results must be submitted.
If there is a separate file, pin fix file, or scan bist file, please submit these.
Enter each file name (also check that BUNRI and ATGNAME are both included in the separate file).
(4) Check if the TAP macros (SBCG, SBCL) are placed on the top layer.
(5) The dedicated boundary scan pins in the BSCAN pattern will be in boundary scan mode if they are not fixed, so indicate that these pins have been fixed to the values shown on the left.
(6) If DC patterns for TAP macro are not described in the DC pattern, the level of the TAP macro I/O pins cannot be set. It is therefore necessary to describe DC patterns for TAP macro in the DC pattern. Enter pattern range in which DC patterns for TAP macro will be described.
(7) Check if the final value of output pin patterns other than boundary scan dedicated pins has been set to " 1 ", " 0 ", or "Hi-Z", and mark accordingly.
3-state outputs must not be undefined or $\mathrm{Hi}-\mathrm{Z}$, so be sure to set the pin level correctly.
(8) Check whether there are the files listed on the left in addition to the regular interface data.

(9) An BSCAN pattern is also necessary when creating circuit-name.scan.init.alb.
(10) There are blocks that cannot be used when designing the scan path, so refer to the restrictions in $<1>$ to $<3>$ and indicate that these restrictions have been observed.

2.8.9 Scan path

(1) Scan path

This check is not required in case of alternate use as boundary scan.
(a) Is If there are 32,000 or more F / Fs, the scan becomes a multiscan. In this case, fill in (2) Multiscan. If there are less than 32,000 F/Fs, check the following items.
(b) SMC, SIN, and SOT are located in the positions reserved for dedicated scan path pins in each package (This does not apply to packages with 314 or more pins.) ${ }^{\text {Note }}$ \qquad
(c) Dedicated scan path pins were added to dif Note \qquad

- Please enter the relevant pin numbers in the following table for confirmation.

Pin Name	Pin No.	Pin Name	Pin No.	
SMC	$\mathbf{4 5}$	AMC	$\mathbf{8}$	
SIN	$\mathbf{4 6}$	SCK	38	
SOT	$\mathbf{4 4}$			

(d) Do the following 3 pins function alternately as general pins?

- SIN \qquad \square Has alternate function

Pin name:
AAA \square Does not have alternate function

- SOT \qquad Has alternate function Pin name: \qquad - Does not have alternate function
- SCK \qquad Has alternate function Pin name: CCC \square Does not have alternate function
- If these pins have alternate functions, the circuits have been configured in accordance with the design manual ${ }^{\text {Note }}$ \qquad
Be sure to submit the .primpin file regardless of whether these pins function alternately as general pins.
(e) It is confirmed that no error occurred in scan rule check ${ }^{\text {Note }}$ \qquad \cdots
The scan rule check execution results have been submitted ${ }^{\text {Note }}$ \qquad .. \square
(If not, please submit them)
- If there is a separate file, pin fix file, or scan bist file, please submit these at the same time
- Separate file name BUNRI Pin fix file name_KOTEI Scan bist file name .bist.scn
(f) The following restrictions apply when designing the scan path.

Are all the following restrictions observed? Note \qquad
<1> Use of an internal bus configuration (F53X, F54X, etc.) is not possible.
$<2>$ Be sure to configure the external I/O pins in the top layer.

The standard fault coverage is 95%. If a fault coverage greater than 95% is required, please contact NEC Electronics prior to interfacing.

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(1) Enter the following information about the scan path.
(a) If there are 32,000 or more F/Fs, the scan becomes a multiscan. In this case, fill in (2) Multiscan (the items below do not need to be checked).
(b) In packages of less than 314 pin, the SMC, SIN, and SOT pin configuration locations is set separately for each package, so check if the pins are placed at their assigned locations and mark accordingly.
(c) Indicate whether scan-dedicated pins have been added to the dif file. For confirmation, also enter the pin No. of the SMC, SIN, SOT, AMC, and SCK pins.
(d) SIN, SOT, and SCK can function alternately as general pins, so indicate whether these pins have generalpin alternate functions.
If these pins have alternate functions, enter the pin names and indicate whether the circuits have been configured in accordance with the design manual.
Be sure to submit the .primpin file regardless of whether these pins function alternately as general pins.
(e) The scan rule check checks the adequacy of the scan circuits and therefore must be executed. Check the execution results and indicate that there were no errors. If an error occurred, fix it, re-execute the scan rule check, and confirm that the error did not reoccur. The execution results must be submitted. If there is a separate file, pin fix file, or scan bist file, please submit these.
Enter each file name (also check that BUNRI and ATGNAME are both included in the separate file).
(f) There are blocks that cannot be used when designing the scan path, so refer to the restrictions in <1> and <2> and indicate that these restrictions have been observed.
(2) Multiscan
(a) Enter a check mark in the following table for the number of scan chains.

Number of F/Fs	31999 or Less	32000 to 63999	64000 to 127999	128000 to 255999	256000 to 511999	512000 or More
Number of scan chains	1	2	4	8	16	32
	$\sqrt{ }$					

(b) It is confirmed that no error occurred in scan rule check ${ }^{\text {Note }}$. \qquad ... \square The scan rule check execution results have been submitted ${ }^{\text {Note }}$ \qquad (If not, please submit them)

- If there is a separate file, pin fix file, or scan bist file, please submit these at the same time. - Separate file name_BUNRI Pin fix file name_KOTEI Scan bist file name bist.scn
(c) Enter the pin names corresponding to the following pins when multiscan pins are used alternately as user pins.
When SIN, SOT, and SCK pins are not used alternately, it is not necessary to enter this item.

Dedicated Pin Name	External Pin Name	Dedicated Pin Name	External Pin Name	Dedicated Pin Name	External Pin Name	Dedicated Pin Name	External Pin Name
SIN1	aa	SOT1		SIN17		SOT17	
SIN2	bb	SOT2		SIN18		SOT18	
SIN3		SOT3		SIN19		SOT19	
SIN4		SOT4		SIN20		SOT20	
SIN5		SOT5		SIN21		SOT21	
SIN6		SOT6		SIN22		SOT22	
SIN7		SOT7		SIN23		SOT23	
SIN8		SOT8		SIN24		SOT24	
SIN9		SOT10		SIN25		SOT25	
SIN10		SOT11		SIN26		SOT26	
SIN11		SOT13		SIN27		SOT27	
SIN12		SOT14		SIN28		SOT28	
SIN13		SOT15		SIN29		SOT29	
SIN14		SOT16		SIN31		SOT30	
SIN15			SIN32		SOT31		
SIN16				SOT32			
SCK							

- If these pins have alternate functions, the circuits have been configured in accordance
with the design manual ${ }^{\text {Note }}$ \qquad
(d) The following restrictions apply when designing the scan path.

Are all the following restrictions observed? ${ }^{\text {Note }}$ \qquad \ldots
<1> Use of an internal bus configuration (F53X, F54X, etc.) is not possible.
<2> Be sure to configure the external I/O pins in the top layer.
The standard fault coverage is 95%. If a fault coverage greater than 95% is required, please contact NEC Electronics prior to interfacing.
Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.
(2) Enter the following information about the multiscan.
(a) Enter the check mark in the following table for the number of scan chains.

Calculate the number of F/Fs from the result of GateDRC.
The number of scan chains is $1,2,4,8,16$, and 32 only as shown in the table. The other numbers are not supported.
(b) The scan rule check checks the adequacy of the scan circuits and therefore must be executed. Check the execution results and indicate that there were no errors. If an error occurred, fix it, re-execute the scan rule check, and confirm that the error did not reoccur. The execution results must be submitted. If there is a separate file, pin fix file, or scan bist file, please submit these.
Enter each file name (also check that BUNRI and ATGNAME are both included in the separate file).
(c) The SIN, SOT, and SCK pins can function alternately as general pins, so if they are being used as such, check that the circuits have been configured in accordance with the design manual.

(d) There are blocks that cannot be used when designing the scan path, so refer to the restrictions in <1> and <2> and indicate that these restrictions have been observed.

2.8.10 Boundary scan

This check is not required in case of alternate use as scan path.
(1) For boundary scan dedicated pins, enter the pin names corresponding to the following pins for verification purposes.

Pin Name	External Pin Name	Dedicated Pin Name	External Pin Name	Dedicated Pin Name	External Pin Name
TCK	TCK	TMS	TMS	TDO	TDO
TDI	TDI	TRST	TRST		

(2) It is confirmed that no error occurred in boundary scan rule check (BSCHK) Note

The BSCHK execution results have been submitted ${ }^{\text {Note }}$ \qquad
(If not, please submit them)
(3) BSCAN pattern
(a) The dedicated boundary scan pins are fixed to the following values ${ }^{\text {Note }}$ \qquad
(These pins must be fixed; otherwise they will be in boundary scan mode)

$$
\mathrm{TCK}=0, \mathrm{TMS}=1, \mathrm{TDI}=1, \mathrm{TRST}=0, \mathrm{TDO}=\mathrm{Hi}-\mathrm{Z}
$$

- The same applies for user patterns such as DC and LFT.
(b) Patterns in which the final value is fixed to 1,0 , or $\mathrm{Hi}-\mathrm{Z}$ at each output pin have been prepared ${ }^{\text {Note }}$ \qquad
<1> In the case of 2-state, N -ch open-drain output pin, at least 2 patterns have been prepared ${ }^{\text {Note }}$ \qquad
(The 2 states are " 0 " and " 1 ", and N -ch open drain is " 0 " and " $\mathrm{Hi}-\mathrm{Z}$ ".)
$<2>$ In the case of 3 -state, bidirectional output pins, at least 3 patterns have been
prepared ${ }^{\text {Note }}$ \qquad
(The 3 states are " 0 ", " 1 ", and "Hi-Z", and bidirectional is " 0 ", " 1 ", and "input mode".)
(4) Please enter below the DC measurement pattern of the TAP macro section in the DC test pattern.
(Refer to the design manual for details of the TAP macro DC pattern.)
From \qquad pattern to \qquad pattern

Be aware that if the DC pattern is not described, the tester cannot measure the level, possibly causing defective products to be mixed in the samples at shipment.

- Use either SBC4 or SBCJ as the TAP macro.
(5) Interface data:

The following data has been prepared in addition to the usual interface dataNote \qquad .bspat.alb, .bscanchk, .bspat.albchk Result of simulation (MIN, MAX) using .bspat.alb (.slg, .iomoduchk, .dpmodechk, .tpe)

Note If this item is satisfied, check the box. For any boxes left unchecked, please write proposed countermeasures.

Enter the following information about the boundary scan.
(1) For confirmation, enter the names of the external pins corresponding to the dedicated boundary scan pins (ensure that the names of the dedicated boundary scan pins match those of the external pins).
(2) BSCHK checks the adequacy of the boundary scan circuits and therefore must be executed. Check the execution results and indicate that there were no errors. If an error occurred, fix it, re-execute BSCHK, and confirm that the error did not reoccur. The execution results must be submitted.
(3) Enter the following information about the BSCAN pattern.
(a) The dedicated boundary scan pins in the BSCAN pattern will be in boundary scan mode if they are not fixed, so indicate that these pins have been fixed to the values shown on the left.
(b) Check if patterns where the final pattern value has been set to " 1 ", to " 0 ", and "Hi-Z" have been prepared for each output pin, and mark accordingly.
<1> At least 2 BSCAN patterns are required for 2-state and N -ch open-drain output pins.
(" 0 " and " 1 " for 2 -state; " 0 " and " $\mathrm{Hi}-\mathrm{Z}$ " for N -ch open drain)
<2> At least 3 BSCAN patterns are required for 3-state and bidirectional output pins.
(" 0 ", " 1 ", and "Hi-Z" for 3 -state, and " 0 ", " 1 ", and "input mode" for bidirectional pins)
(4) If DC patterns for TAP macro are not described in the DC pattern, the level of the TAP macro I/O pins cannot be set. It is therefore necessary to describe DC patterns for TAP macro in the DC pattern. Enter pattern range in which DC patterns for TAP macro will be described.
(5) Check whether there are the files listed on the left in addition to the regular interface data. Submit also information for results of MIN/MAX simulation execution with .bspat.alb.

CHAPTER 3 PRODUCT SPECIFICATIONS

To enable connection to both CMOS and TTL products, the CMOS-N5 Series is provided with two types of input/ output interface blocks, each with a specified $\mathrm{VIL}_{\text {IL }}$ and V_{IH} : CMOS level and TTL level. In general, usable operating conditions differ between the CMOS products and TTL products. This chapter describes the recommended operating conditions and the DC and AC characteristics corresponding to the usable power supply voltage range and temperature range.

3.1 Terminology

Table 3-1. Terminology for Absolute Maximum Ratings

Parameter	Symbol	Definition
Power supply voltage	VDD	Range of voltages which will not damage or reduce reliability when applied to the $V_{D D}$ pin.
Input voltage	V	Range of voltages which will not damage or reduce reliability when applied to the input pin.
Output voltage	Vo	Range of voltages which will not damage or reduce reliability when applied to the output pin.
Input current	1	Maximum allowable current which will not cause latchup when applied to the input pin.
Output current	Io	Maximum allowable DC current which will not cause damage or reduce reliability when flowing to or from the output pin.
Operating temperature	TA	Range of ambient temperatures for normal logical operation.
Storage temperature	$\mathrm{T}_{\text {stg }}$	Range of element temperatures which will not damage or reduce reliability in the state where neither voltage nor current is applied.

Table 3-2. Terminology for Recommended Operating Conditions

Parameter	Symbol	
Power supply voltage	V_{DD}	Range of voltages for normal logical operation when $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$.
Input voltage, high	V_{IH}	For voltage applied to the input of the gate array, this value indicates the voltage of the high-level state in which the input buffer operates normally. - If voltage greater than the MIN. value is applied, the input voltage is assured to be high-level.
Input voltage, low	V_{IL}	For voltage applied to the input of the gate array, this value indicates the voltage of the low-level state in which the input buffer operates normally. - If a voltage less than the MAX. value is applied, the input voltage is assured to be low-level.
Positive trigger voltage	V_{P}	Input level that inverts the output level when the input of the gate array is changed from the low-level side to the high-level side.
Negative trigger voltage	V_{N}	Input level that inverts the output level when the input of the gate array is changed from the high-level side to the low-level side.
Hysteresis voltage	V_{H}	Difference between the positive- and negative-trigger voltage. Input rise time $\mathrm{t}_{\text {ri }}$
Input fall time	Limit value for the rise time from 10% to 90% of the input voltage applied to the input of the gate array.	

Table 3-3. Terminology for DC Characteristics

Parameter	Symbol	Definition
Static current consumption	Iods	In the state where there is no voltage change in the input and output pins, indicates the current that flows in from the power supply pin at the specified power supply voltage.
Off-state output current	loz	For a 3-state output, this value indicates the current that flows through the output pin at the specified voltage when the output is at high impedance.
Output short-circuit current	los	Current that flows out if the output pin is short-circuited to GND when output is at the high level.
Input leakage current	l।	Current that flows through the input pin when voltage is applied to the input pin.
Output current, low	loL	Current that flows to the output pin at the specified low-level output voltage.
Output current, high	loн	Current that flows from the output pin at the specified high-level output voltage.
Output voltage, low	VoL	Output voltage when output is open in the low-level state.
Output voltage, high	Voн	Output voltage when output is open in the high-level state.

3.2 Absolute Maximum Ratings

Table 3-4. Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	VDD		-0.5 to +6.0	V
Input voltage/output voltage	VI/Vo		-0.5 to +6.0	V
Input current	1		20	mA
Output current	lo	$\mathrm{loL}=3.0 \mathrm{~mA}$ type	10	mA
		$\mathrm{loL}=6.0 \mathrm{~mA}$ type	15	mA
		$\mathrm{loL}=9.0 \mathrm{~mA}$ type	20	mA
		$\mathrm{loL}=12.0 \mathrm{~mA}$ type	30	mA
		$\mathrm{loL}=18.0 \mathrm{~mA}$ type	40	mA
		$\mathrm{loL}=24.0 \mathrm{~mA}$ type	60	mA
Operating ambient temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.3 Standard Specification of CMOS Interface Conditions (VDD $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

3.3.1 Recommended operating range

Table 3-5. Recommended Operating Range ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply voltage	VDD			4.5	5.0	5.5	V
Input voltage, high	V_{H}	CMOS interface ${ }^{\text {Note } 1}$		0.7 VDD		VDD	V
Input voltage, Iow	VIL			0.00		0.3VdD	V
Positive trigger voltage	V_{P}		Old-type Schmitt input Note2	0.80		3.90	V
Negative trigger voltage	V_{N}			0.60		3.10	V
Hysteresis voltage	V_{H}			0.20		0.80	V
Positive trigger voltage	V_{P}		New-type	2.85		3.75	V
Negative trigger voltage	V_{N}		Schmitt input	1.15		1.75	V
Hysteresis voltage	V_{H}			1.30		2.07	V
Input voltage, high	V_{IH}	TTL interface ${ }^{\text {Note } 1}$		2.29		VDD	V
Input voltage, low	VIL			0.00		0.77	V
Positive trigger voltage	V_{P}		Old-type Schmitt input Note2	1.15		2.54	V
Negative trigger voltage	V_{N}			0.59		2.10	V
Hysteresis voltage	V_{H}			0.15		0.60	V
Positive trigger voltage	V_{P}		New-type Schmitt input Note 3	1.68		2.55	V
Negative trigger voltage	V_{N}			0.64		1.33	V
Hysteresis voltage	V_{H}			0.83		1.44	V
Input rise time	tri	Normal input		0		200	ns
Input fall time	$t_{\text {fi }}$			0		200	ns
Input rise time	tri	Schmitt input		0		10	ms
Input fall time	$t_{\text {fi }}$			0		10	ms

Notes 1. Use a new-type CMOS interface, which has W suffixed to the block name, for the Schmitt buffer.
2. Schmitt buffer without W suffixed to the block name.
3. Schmitt buffer with W suffixed to the block name.

Remark When inputting a slow signal with a long rise/fall time, noise on the signal line may affect the operation, so be sure to use a Schmitt trigger input buffer. Because fluctuation on the power supply line due to simultaneous operation of output buffers reduces the capability of the Schmitt trigger input buffer, carefully determine pin placement.

3.3.2 DC characteristics

Table 3-6. DC Characteristics ($\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Static current consumption ${ }^{\text {Note }} 1$ Off-state output current Output short-circuit current ${ }^{\text {Note }} 2$	Idds loz los	$\begin{aligned} & V_{I}=V_{D D} \text { or GND } \\ & V_{D}=V_{D D} \text { or GND } \\ & V_{O}=G N D \end{aligned}$		0.1	$\begin{gathered} 100 \\ \pm 10 \\ -250 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Input leakage current Normal input With pull-up resistor ($50 \mathrm{k} \Omega$) With pull-up resistor ($5 \mathrm{k} \Omega$) With pull-down resistor ($50 \mathrm{k} \Omega$)		$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{gathered} 45 \\ 0.3489 \\ 45 \end{gathered}$	$\begin{gathered} \pm 10^{-5} \\ 131.0 \\ 1.00 \\ 131.0 \end{gathered}$	$\begin{gathered} \pm 10 \\ 319.7 \\ 2.2 \\ 319.7 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA $\mu \mathrm{A}$
Pull-up resistor $(50 \mathrm{k} \Omega)^{\text {Note } 3}$ Pull-up resistor ($5 \mathrm{k} \Omega)^{\text {Note } 3}$ Pull-down resistor (50 k Ω) ${ }^{\text {Note } 3}$	Rpu Rpu RpD	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{gathered} 17.2 \\ 2.5 \\ 17.2 \end{gathered}$	$\begin{gathered} 38.2 \\ 5.0 \\ 38.2 \end{gathered}$	$\begin{aligned} & 100 \\ & 12.9 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Output voltage, low (CMOS-level output) Output voltage, high (CMOS-level output)	Vol Vон	$\mathrm{loL}=0 \mathrm{~mA}$ $\text { Іон }=0 \mathrm{~mA}$	VDD - 0.1		0.1	V V
Output current, Iow (CMOS-level output) 3.0 mA type 6.0 mA type 9.0 mA type 12.0 mA type 18.0 mA type 24.0 mA type	lob loL loL loL loL loL	$\begin{aligned} & \mathrm{VOL}=0.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \\ & \mathrm{VoL}=0.4 \mathrm{~V} \\ & \mathrm{~V} \text { OL }=0.4 \mathrm{~V} \\ & \mathrm{~V} \text { OL }=0.4 \mathrm{~V} \\ & \mathrm{~V} \text { OL }=0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.00^{\text {Note } 4} \\ 6.00 \\ 9.00 \\ 12.00 \\ 18.00 \\ 24.00 \end{gathered}$			mA mA mA mA mA mA
Output current, high (CMOS-level output) 3.0 mA type 6.0 mA type 9.0 mA type 12.0 mA type 18.0 mA type 24.0 mA type	Іон Іон Іон Іон Іон Іон		$\begin{aligned} & -3.00 \\ & -6.00 \\ & -9.00 \\ & -12.00 \\ & -18.00 \\ & -24.00 \end{aligned}$			mA mA mA mA mA mA

Notes 1. Static current consumption increases when an I/O block with an on-chip pull-up/pull-down resistor and an oscillator are used. See CHAPTER 4 ESTIMATING ELECTRICAL CHARACTERISTICS for details.
2. The output short-circuit time is less than one second and for only one LSI pin.
3. The pull-up resistor and pull-down resistor values vary depending on the input and output voltages.
4. This value is 2.0 mA if a pull-up resistor of $5 \mathrm{k} \Omega$ is connected.

Remark The + and - signs of the current values in the table indicate the direction of the current. Current flowing into a device is indicated by + ; current flowing out is indicated by - .

3.3.3 AC characteristics

Table 3-7 shows the AC characteristics.
The maximum operating clock frequency (fmax) of the internal cell toggle flip-flop is the value of the toggle frequency (ftog) in the table. Note that the fmax varies in the actual circuit according to the circuit configuration.

Table 3-7. AC Characteristics ($\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum toggle frequency	ffog	Internal toggle F/F Fan-outs $=2$, wiring length $=0 \mathrm{~mm}$	200			
Propagation delay time	tpD	Internal gate Fan-outs $=2$, wiring length $=2 \mathrm{~mm}$ Fan-outs $=1$, standard wiring length Fan-outs $=2$, standard wiring length		$\begin{aligned} & 0.30 \\ & 0.16 \\ & 0.18 \end{aligned}$		ns ns ns
		Internal gate (low power gate) Fan-outs $=1$, standard wiring length Fan-outs $=1$, wiring length $=0 \mathrm{~mm}$		$\begin{aligned} & 0.21 \\ & 0.14 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
		Input buffer Fan-outs $=1$, standard wiring length Fan-outs $=2$, wiring length $=2 \mathrm{~mm}$		$\begin{aligned} & 0.23 \\ & 0.33 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
		Output buffer (FO01) $C L=15 \mathrm{pF}$		1.30		ns
Output rise time	tr	Output buffer (FO01) $C L=15 \mathrm{pF}$		1.23		ns
Output fall time	tf	Output buffer (FO01) $C_{L}=15 \mathrm{pF}$		1.62		ns

3.4 Specification $1\left(\mathrm{VdD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

3.4.1 Recommended operating range

Table 3-8. Recommended Operating Range ($\mathrm{VDD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply voltage	VDD			2.7	3.0	3.3	V
Input voltage, high	$\mathrm{V}_{\text {IH }}$	CMOS interface		0.8VDD		VDD	V
Input voltage, low	VIL			0.0		0.2 VDD	V
Positive trigger voltage	V_{P}		Schmitt input	1.75		2.40	V
Negative trigger voltage	V_{N}			0.70		1.10	V
Hysteresis voltage	V_{H}			0.81		1.46	V
Input rise time	$\mathrm{tri}^{\text {i }}$	Normal input		0		200	ns
Input fall time	tif			0		200	ns
Input rise time	tri	Schmitt input		0		10	ms
Input fall time	tif			0		10	ms

Remark When inputting a slow signal with a long rise/fall time, noise on the signal line may affect the operation, so be sure to use a Schmitt trigger input buffer.
Because fluctuation on the power supply line due to simultaneous operation of output buffers reduces the capability of the Schmitt trigger input buffer, carefully determine pin placement.

3.4.2 DC characteristics

Table 3-9. DC Characteristics ($\mathrm{VdD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Static current consumption ${ }^{\text {Note }} 1$ Off-state output current Output short-circuit current ${ }^{\text {Note } 2}$	Idds loz los	$\begin{aligned} & V_{I}=V_{D D} \text { or GND } \\ & V_{0}=V_{D D} \text { or GND } \\ & V_{0}=G N D \end{aligned}$			$\begin{gathered} 54.7 \\ \pm 8 \\ -200 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \end{aligned}$
Input leakage current Normal input With pull-up resistor ($50 \mathrm{k} \Omega$) With pull-up resistor ($5 \mathrm{k} \Omega$) With pull-down resistor ($50 \mathrm{k} \Omega$)	1. 1 1. 1	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{VDD} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & 10.5 \\ & 0.08 \\ & 10.5 \end{aligned}$	$\begin{gathered} \pm 6 \times 10^{-5} \\ 40.8 \\ 0.41 \\ 40.8 \end{gathered}$	$\begin{gathered} \pm 8 \\ 110.0 \\ 0.80 \\ 110.0 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA $\mu \mathrm{A}$
Pull-up resistor ($50 \mathrm{k} \Omega)^{\text {Note } 3}$ Pull-up resistor ($5 \mathrm{k} \Omega$) ${ }^{\text {Note } 3}$ Pull-down resistor ($50 \mathrm{k} \Omega)^{\text {Note } 3}$	Rpu Rpu Rpd	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{gathered} 24.5 \\ 3.4 \\ 24.5 \end{gathered}$	$\begin{gathered} 73.5 \\ 7.4 \\ 73.5 \end{gathered}$	$\begin{gathered} 314.0 \\ 41.3 \\ 314.0 \end{gathered}$	k Ω $\mathrm{k} \Omega$ $\mathrm{k} \Omega$
Output voltage, low (CMOS-level output) Output voltage, high (CMOS-level output)	Vol Vон	$\mathrm{loL}=0 \mathrm{~mA}$ $\text { Іон }=0 \mathrm{~mA}$	$V_{D D}-0.1$		0.1	V V
Output current, low (CMOS-level output) 1.0 mA type 3.0 mA type 6.0 mA type 9.0 mA type 12.0 mA type 18.0 mA type	los los los los loL los	$\begin{aligned} \mathrm{VoL} & =0.4 \mathrm{~V} \\ \mathrm{VoL} & =0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.00^{\text {Note } 4} \\ 3.00 \\ 6.00 \\ 9.00 \\ 12.00 \\ 18.00 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output current, high (CMOS-level output) 1.0 mA type 3.0 mA type 6.0 mA type 9.0 mA type 12.0 mA type 18.0 mA type	Іон Іон Іон Іон Іон Іон	$\begin{aligned} & \text { VOH }=\mathrm{V}_{\text {DD }}-0.4 \mathrm{~V} \\ & \mathrm{VOH}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \\ & \mathrm{VOH}_{\mathrm{O}}=\mathrm{V} D \mathrm{D}-0.4 \mathrm{~V} \\ & \mathrm{VOH}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \\ & \mathrm{VOH}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \\ & \mathrm{~V} \text { OH }=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.00 \\ & -3.00 \\ & -6.00 \\ & -9.00 \\ & -12.00 \\ & -18.00 \end{aligned}$			mA mA mA mA mA mA

Notes 1. Static current consumption increases when an I/O block with an on-chip pull-up/pull-down resistor and an oscillator are used. See CHAPTER 4 ESTIMATING ELECTRICAL CHARACTERISTICS for details.
2. The output short-circuit time is less than one second and for only one LSI pin.
3. The pull-up resistor and pull-down resistor values vary depending on the input and output voltages.
4. This value is 0.8 mA if a pull-up resistor of $5 \mathrm{k} \Omega$ is connected.

Remark The + and - signs of the current values in the table indicate the direction of the current. Current flowing into a device is indicated by + ; current flowing out is indicated by -.

3.4.3 AC characteristics

Table 3-10 shows the AC characteristics.
The maximum operating clock frequency (fмах) of the internal cell toggle flip-flop is the value of the toggle frequency (ftog) in the table. Note that the fmax varies in the actual circuit according to the circuit configuration.

Table 3-10. AC Characteristics ($\mathrm{VDD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum toggle frequency	ftog	Internal toggle F/F Fan-outs $=2$, wiring length $=0 \mathrm{~mm}$	120			
Propagation delay time	tpd	Internal gate Fan-outs $=2$, wiring length $=2 \mathrm{~mm}$ Fan-outs $=1$, standard wiring length Fan-outs $=2$, standard wiring length		$\begin{aligned} & 0.42 \\ & 0.23 \\ & 0.26 \end{aligned}$		ns ns ns
		Internal gate (low power gate) Fan-outs $=1$, standard wiring length Fan-outs $=1$, wiring length $=0 \mathrm{~mm}$		$\begin{aligned} & 0.30 \\ & 0.20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
		Input buffer Fan-outs $=1$, standard wiring length Fan-outs $=2$, wiring length $=2 \mathrm{~mm}$		$\begin{aligned} & 0.34 \\ & 0.47 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
		Output buffer (FO01) $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$		1.92		ns
Output rise time	tr	Output buffer (FO01) $C L=15 \mathrm{pF}$		1.76		ns
Output fall time	tf	Output buffer (FO01) $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$		2.16		ns

3.5 Specification $2\left(\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

3.5.1 Recommended operating range

Table 3-11. Recommended Operating Range ($\mathrm{V}_{\mathrm{DD}}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply voltage	VDD			3.0	3.3	3.6	V
Input voltage, high	V_{H}	CMOS interface		0.8 VdD		VDD	V
Input voltage, low	VIL			0.0		0.2VDD	V
Positive trigger voltage	V_{P}		Schmitt input	1.95		2.60	V
Negative trigger voltage	V_{N}			0.75		1.20	V
Hysteresis voltage	V_{H}			0.90		1.57	V
Input voltage, high	V_{H}	TTL interface		2.0		V ${ }_{\text {dD }}$	V
Input voltage, low	VIL			0.0		0.8	V
Positive trigger voltage	V_{P}		Schmitt input	Under study			V
Negative trigger voltage	V_{N}						V
Hysteresis voltage	V_{H}						V
Input rise time	tri	Normal input		0		200	ns
Input fall time	tfi			0		200	ns
Input rise time	tri	Schmitt input		0		10	ms
Input fall time	$t_{\text {fi }}$			0		10	ms

Remark When inputting a slow signal with a long rise/fall time, noise on the signal line may affect the operation, so be sure to use a Schmitt trigger input buffer.
Because fluctuation on the power supply line due to simultaneous operation of output buffers reduces the capability of the Schmitt trigger input buffer, carefully determine pin placement.

3.5.2 DC characteristics

Table 3-12. DC Characteristics ($\mathrm{VdD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Static current consumptionNote 1 Off-state output current Output short-circuit current ${ }^{\text {Note }} 2$	Iods loz los	$\begin{aligned} & V_{I}=V_{D D} \text { or GND } \\ & V_{0}=V_{D D} \text { or GND } \\ & V_{0}=G N D \end{aligned}$			$\begin{gathered} 54.7 \\ \pm 8 \\ -200 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Input leakage current Normal input With pull-up resistor ($50 \mathrm{k} \Omega$) With pull-up resistor ($5 \mathrm{k} \Omega$) With pull-down resistor ($50 \mathrm{k} \Omega$)	॥	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{GND} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.10 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 6 \times 10^{-5} \\ 59.7 \\ 0.49 \\ 59.7 \\ \hline \end{gathered}$	$\begin{gathered} \pm 8 \\ 135.0 \\ 0.95 \\ 135.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Pull-up resistor (50 k $\Omega)^{\text {Note } 3}$ Pull-up resistor ($5 \mathrm{k} \Omega)^{\text {Note } 3}$ Pull-down resistor ($50 \mathrm{k} \Omega)^{\text {Note } 3}$	Rpu Rpu Rpd	$\begin{aligned} & V_{1}=G N D \\ & V_{I}=G N D \\ & V_{1}=V_{D D} \end{aligned}$	$\begin{gathered} 22.2 \\ 3.2 \\ 22.2 \end{gathered}$	$\begin{gathered} 55.3 \\ 6.7 \\ 55.3 \end{gathered}$	$\begin{gathered} 248.3 \\ 36.0 \\ 248.3 \end{gathered}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$ $\mathrm{k} \Omega$
Output voltage, low (CMOS-level output) Output voltage, high (CMOS-level output)	Vol Vон	$\begin{aligned} & \mathrm{loL}=0 \mathrm{~mA} \\ & \mathrm{IOH}=0 \mathrm{~mA} \end{aligned}$	Vdo-0.1		0.1	V V
Output current, low (CMOS-level output) 1.0 mA type 3.0 mA type 6.0 mA type 9.0 mA type 12.0 mA type 18.0 mA type	loL loL los los loL loL	$\begin{aligned} \mathrm{VoL} & =0.4 \mathrm{~V} \\ \mathrm{VoL} & =0.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.00^{\text {Note } 4} \\ 3.00 \\ 6.00 \\ 9.00 \\ 12.00 \\ 18.00 \end{gathered}$			mA mA mA mA mA mA
Output current, high (CMOS-level output) 1.0 mA type 3.0 mA type 6.0 mA type 9.0 mA type 12.0 mA type 18.0 mA type	Іон Іон Іон Іон Іон Іон		$\begin{aligned} & -1.00 \\ & -3.00 \\ & -6.00 \\ & -9.00 \\ & -12.00 \\ & -18.00 \end{aligned}$			mA mA mA mA mA mA

Notes 1. Static current consumption increases when an I/O block with an on-chip pull-up/pull-down resistor and an oscillator are used. See CHAPTER 4 ESTIMATING ELECTRICAL CHARACTERISTICS for details.
2. The output short-circuit time is less than one second and for only one LSI pin.
3. The pull-up resistor and pull-down resistor values vary depending on the input and output voltages.
4. This value is 0.8 mA if a pull-up resistor of $5 \mathrm{k} \Omega$ is connected.

Remark The + and - signs of the current values in the table indicate the direction of the current. Current flowing into a device is indicated by + ; current flowing out is indicated by - .

3.5.3 AC characteristics

Table 3-13 shows the AC characteristics.
The maximum operating clock frequency (fмах) of the internal cell toggle flip-flop is the value of the toggle frequency (ftog) in the table. Note that the fmax varies in the actual circuit according to the circuit configuration.

Table 3-13. AC Characteristics ($\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum toggle frequency	ftog	Internal toggle F/F Fan-outs $=2$, wiring length $=0 \mathrm{~mm}$	130			
Propagation delay time	tpD	Internal gate Fan-outs $=2$, wiring length $=2 \mathrm{~mm}$ Fan-outs $=1$, standard wiring length Fan-outs $=2$, standard wiring length		$\begin{aligned} & 0.39 \\ & 0.22 \\ & 0.24 \end{aligned}$		ns ns ns
		$\begin{aligned} & \text { Internal gate (low power gate) } \\ & \text { Fan-outs }=1 \text {, standard wiring length } \\ & \text { Fan-outs }=1 \text {, wiring length }=0 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & 0.28 \\ & 0.18 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
		Input buffer Fan-outs $=1$, standard wiring length Fan-outs $=2$, wiring length $=2 \mathrm{~mm}$		$\begin{aligned} & 0.31 \\ & 0.44 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
		Output buffer (FO01) $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		1.76		ns
Output rise time	tr	Output buffer (FO01) $\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$		1.62		ns
Output fall time	tf	Output buffer (FO01) $\mathrm{CL}=15 \mathrm{pF}$		2.02		ns

3.6 Pin Capacitance

The pin capacitance is the sum of the interface block capacitance and the package characteristic capacitance. Table 3-14 shows the capacitance (Св) of the interface blocks. Table $3-15$ shows the capacitance (Ср) of each package. The pin capacitance is calculated by the following formula:

$$
\text { Pin capacitance }\left(C_{\tau}\right)=\text { interface block capacitance }\left(C_{в}\right)+\text { capacitance of each package }\left(C_{P}\right)
$$

Table 3-14. Capacitance of Interface Block (Св)
(a) Input buffer

Interface Level	$\mathrm{C}_{\text {B(MIN.) }}(\mathrm{pF})$		$\mathrm{C}_{\mathrm{B} \text { (MAX.) }}(\mathrm{pF})$	
	Normal	With Failsafe	Normal	With Failsafe
CMOS	4.0	3.50	7.0	5.0
TTL	4.0	3.50	7.0	5.0

Remark $V_{D D}=0 \mathrm{~V} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$
(b) Output buffer/bidirectional buffer

Interface Level		Св (pF)						
		3 mA	6 mA	9 mA	12 mA	18 mA	24 mA	
CMOS	MIN.	4.0	4.0	4.0	4.0	4.0	4.0	
	MAX.	7.0	7.0	7.0	7.0	7.0	7.0	

Remark $V_{D D}=0 \mathrm{~V} ; \mathrm{T}_{J}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$

Table 3-15. Capacitance of Packages (CP) (Preliminary Values)

Package	Number of Pins	Lead Pitch	Chip Size	CP (pF)
QFP	160	0.5 mm	$24 \times 24 \mathrm{~mm}$	1.5
(fine pitch)	208	0.5 mm	$28 \times 28 \mathrm{~mm}$	1.9
	240	0.5 mm	$32 \times 32 \mathrm{~mm}$	2.0
	304	0.5 mm	$40 \times 40 \mathrm{~mm}$	2.8
TQFP	48	0.5 mm	$7 \times 7 \mathrm{~mm}$	0.9
	64	0.65 mm	$12 \times 12 \mathrm{~mm}$	0.9
	80	0.5 mm	$12 \times 12 \mathrm{~mm}$	0.9
LQFP	44	0.8 mm	$10 \times 10 \mathrm{~mm}$	0.7
	100	0.5 mm	$14 \times 14 \mathrm{~mm}$	1.0
	160	0.5 mm	$24 \times 24 \mathrm{~mm}$	1.5

CHAPTER 4 ESTIMATING ELECTRICAL CHARACTERISTICS

This chapter explains the methodology for calculating the power consumption and propagation delay time.

4.1 Estimating Static Current Consumption

4.1.1 Estimating static current consumption

In the CMOS gate array, only a minute leakage current flows from the power supply to GND in the standby state. If a dedicated oscillation block or an I/O buffer with an on-chip pull-up/pull-down resistor is not used, the static current consumption is equal to the leakage current. On the other hand, if an I/O buffer with an on-chip pull-up/pull-down resistor is used, the static current consumption increases due to direct current flowing through that resistor according to the signal level.

In addition, when an on-chip feedback resistor-type oscillator is used and the oscillation is stopped by clamping the input pin, direct current flows into the feedback resistor, and as a result the static current consumption increases.

To calculate static current consumption, use the following equation:
$\operatorname{IDDS}($ MAX. $)=\mathrm{IL}+\operatorname{IPD} \times \mathrm{m}+\operatorname{IPU} \times \mathrm{n}+\operatorname{IRF} \times \mathrm{k}(\mu \mathrm{A})$

IL: Leakage current (see Figure 4-1)
IpD: Current consumption of $50 \mathrm{k} \Omega$ on-chip resistor (see Figure 4-2)
Ipu: Current consumption of $5 \mathrm{k} \Omega$ on-chip resistor (see Figure 4-3)
IRF: Current consumption of the on-chip feedback resistor of the oscillator (under study)
m : Total of number of signal low levels in an I/O buffer with a $50 \mathrm{k} \Omega$ on-chip pull-up resistor and number of signal high levels in an I/O buffer with a $50 \mathrm{k} \Omega$ on-chip pull-down resistor
n : \quad Number of signal low levels in an I/O buffer with a $5 \mathrm{k} \Omega$ on-chip pull-up resistor
k: Number of oscillators

Figure 4-1. Leakage Current

Figure 4-2. Current Consumption of On-Chip 50 k Ω Resistor (IPD)

Figure 4-3. Current Consumption of On-Chip 5 k Ω Resistor (Ipu)

- Calculation example

When $\mathrm{VDD}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$, calculate the static current consumption under the following conditions.

External Pin	Signal Level	
	High	Low
Input with $5 \mathrm{k} \Omega$ pull-up resistor	2	0
Input with $50 \mathrm{k} \Omega$ pull-down resistor	2	8
Normal input	5	5
Normal output	8	2

\star From Figure 4-1, the leakage current is $\mathrm{IL}=8.6 \mu \mathrm{~A}$.
From Figure 4-2, the current consumption in the $50 \mathrm{k} \Omega$ pull-down resistor is IPD $=110 \mu \mathrm{~A}$.
From the signal level, the current consumption in the $5 \mathrm{k} \Omega$ pull-up resistor is Ipu $=0.0 \mu \mathrm{~A}$.

Therefore,

$$
\begin{aligned}
\text { IDDS } & =\mathrm{IL}+\mathrm{IPD}^{2}+\mathrm{IPU} \\
& =8.6+110+0.0 \mu \mathrm{~A} \\
& =118.6 \mu \mathrm{~A}
\end{aligned}
$$

4.2 Input Through Current

If the input voltage (VIN) is the same as the power supply voltage (V DD), the input leakage current will be the same as the value listed in CHAPTER 3 PRODUCT SPECIFICATIONS. However, if the input voltage is lower than the power supply voltage, or if the input voltage is higher than the GND level, then a current will flow from the Vod line via the P-ch transistor and N -ch transistor into the GND. This current is called the input through current. Figures 4-4 to 411 show the input through current (reference values) for each interface level.

Figure 4-4. Input Through Current
(Vdd = 5.0 V CMOS Level)

Figure 4-6. Input Through Current
(VDD = 5.5 V CMOS Level Schmitt ${ }^{\text {Note }}$)

Note This is a graph of the Schmitt buffer with W in the last of the block name.

Figure 4-5. Input Through Current
($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ TTL Level)

Figure 4-7. Input Through Current
($\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ TTL Level Schmitt ${ }^{\text {Note }}$)

Note This is a graph of the Schmitt buffer with W in the last of the block name.

Figure 4-8. Input Through Current
(Vdd = 3.6 V CMOS Level)

Figure 4-10. Input Through Current
(VDD $=3.6$ V CMOS Level Schmitt ${ }^{\text {Note }}$)

Note This is a graph of the Schmitt buffer with W in the last of the block name.

Figure 4-9. Input Through Current
(VDD = 3.3 V TTL Level)

Figure 4-11. Input Through Current
($\mathrm{VDD}_{\mathrm{DD}}=3.3 \mathrm{~V}$ TTL Level Schmitt ${ }^{\text {Notet }}$)

Note This is a graph of the Schmitt buffer with W in the last of the block name.

4.3 Power Consumption

Although CMOS device transistors consume less power than bipolar devices, they still consume a considerable amount of power if the circuit scale is large and the operating frequency is high. Because the temperature of an LSI (chip), which has a significant influence on the reliability (life) of the LSI, rises with the power consumption, it is necessary to hold the power consumption of the LSI below a maximum.

4.3.1 Causes of power consumption

As with standard CMOS devices, the current consumption is the sum of the following values:

- Charge current of load capacitance connected to each transistor: ic
- Discharge current of load capacitance connected to each transistor: id
- Through current when each transistor is switching:
- Leakage current of the device:

Because there is no charge, discharge, or through current when the LSI is not operating, the power consumption of the chip is determined by the leakage current of the entire device. In as much as the charge, discharge, and through currents become extremely large compared with the leakage current when the LSI is operating, the effect of leakage current can be ignored in the chip power consumption. When the output rise (fall) time of each transistor is extremely fast compared with the input rise (fall) time, the through current increases greatly. However, the through current is normally proportional to the charge and discharge currents.

4.3.2 Estimating power consumption

Power consumption is determined by the charge, discharge, and through currents of each transistor.
However, as it is problematic to define each transistor state, a rough calculation of power consumption is made for each type of block.

The calculated results of the formulas shown below are values at $\mathrm{VDD}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$; thus, adjustments must be made if the power supply or the temperature is different.
(1) Σ Pd $_{\text {deell }}$. Internal cell power consumption (excluding the cells used by memory and interface block)
Σ Pdoell $=\Sigma\left(4.52^{\text {Note } 1} \times \mathrm{f} \times\right.$ Cell $\left.\times \mathrm{A}\right)(\mu \mathrm{W})$
f : Operating frequency (MHz)
Cell: Number of cells operating at frequency f
A: Gate operating factor ${ }^{\text {Note } 2}$
(2) Σ Ррм \qquad Memory block power consumption

RAM block power consumption

Σ Pdram $=\Sigma($ Prm \times frm \times RRM + Pwm \times fwm \times Rwm $)(m W)$
Prm: Unit power consumption during read ($\mathrm{mW} / \mathrm{MHz)}^{\text {Note }} 3$
$f_{R M}$: Operating frequency during read
Rrm: Operating factor during read ${ }^{\text {Note }} 4$
Pwм: Unit power consumption during write $(\mathrm{mW} / \mathrm{MHz})^{\text {Note } 3}$
fwм: Operating frequency during write
Rwм: Operating factor during write ${ }^{\text {Note } 4}$
(3) $\Sigma \mathrm{P}_{\mathrm{ol}}$ \qquad Input buffer and bidirectional buffer input power consumption
$\Sigma \mathrm{PDI}_{\mathrm{D}}=\Sigma(\mathrm{PI} \times \mathrm{f}+\mathrm{Pconst}) \times$ Buffer $(\mu \mathrm{W})$
PI: Power consumption for each input buffer ($\mu \mathrm{W} /$ Buffer $/ \mathrm{MHz}$)
Refer to Table 4-1.
f: Operating frequency (MHz)
Pconst: Constant power consumptionNote 6
Buffer: Number of input buffers and bidirectional buffer inputs operating at frequency f
If input buffer operation is intermittent, use the average operating frequency (f_{A}) ${ }^{\text {Note } 5}$

Table 4-1. Power Consumption by Input Buffer

Block Type	PI
FIO1	16.8470
FIO2	17.4223
FIS1	20.8117
FIS2	17.9722
FIA1	5.2705
FIA2	5.3776
FIE1	10.4223
FIE2	7.4192
FIS1W	12.3430
FIS2W	10.6810

Remark The same power consumption value is applied to the same type buffer.
(4) $\Sigma \mathrm{P}_{\mathrm{do}}$ \qquad Output buffer and bidirectional buffer output power consumption
$\Sigma \mathrm{P}_{\mathrm{Do}}=\Sigma\{(\mathrm{Po}+\mathrm{Pco} \times \mathrm{CL}) \times \mathrm{f}+\mathrm{Pconst}\} \times$ Buffer (mW)
Po: Power consumption for each output buffer (without load) ($\mathrm{mW} / \mathrm{MHz}$)
Refer to Table 4-2.
Pco: Power consumption for each output buffer (load dependent) ($\mathrm{mW} / \mathrm{MHz} / \mathrm{pF}$)
Refer to Table 4-2.
CL: Load capacitance
f: Operating frequency (MHz)
If output buffer operation is intermittent, use the average operating frequency (f_{A}) ${ }^{\text {Note }} 5$
Pconst: Constant power consumptionNote 6
Buffer: Number of output buffers and bidirectional buffer outputs operating at frequency f

Table 4-2. Output Buffer Power Consumption

Block Type	Po	Pco
FO09	0.2257	0.0264
FO04	0.2374	0.0268
FO01	0.2984	0.0271
FO02	0.3829	0.0272
FO03	0.6270	0.0263
FO06	1.0067	0.0254
FE09	0.1675	0.0271
FE04	0.1621	0.0275
FE01	0.2461	0.0266
FE02	0.2598	0.0265
FE03	0.4336	0.0266
FE06	0.7298	0.0255

(5) Σ Pдdis \qquad Clock tree synthesis power consumption
Σ PdCTS $=\Sigma \operatorname{PCTS}(\mu \mathrm{W})$
f : Operating frequency (MHz)
FF: Number of flip-flops

FC42: $\operatorname{Pcts}=6.73 \times(F F \times 0.057) \times f$
FC82: $\mathrm{Pcts}=6.73 \times(\mathrm{FF} \times 0.114) \times f$
FC44: Pcts $=6.73 \times(F F \times 0.077) \times f$
FC84: $\operatorname{Pcts}=6.73 \times(F F \times 0.154) \times f$
(6) $\mathbf{\Sigma P o s c}$ \qquad Oscillator power consumption
Σ Posc $=$ Posc1 \times number of oscillators $(1$ or 2$)(\mathrm{mW})$
Posc1: Power consumption per one oscillator ($\mathrm{mW} / \mathrm{MHz} \mathrm{)}$

The power consumption of the oscillator is shown in Table 4-3. The values in Table 4-3 are reference values because the power consumption of the oscillator varies greatly depending on the resonator and constant.

Table 4-3. Oscillator Power Consumption (Reference Values) (VdD $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Frequency (MHz)	External Constant Used				Duty (\%)	Vstart (V)	Vhold (V)	Poscs (mW)
	Cin (pF)	Cout (pF)	LT ($\mu \mathrm{H}$)	CT (pF)				
4	100	100			53.0	1.97	1.97	27.50
8	68	68			51.2	1.23	1.23	33.00
16	39	39			50.7	2.23	2.20	63.25
32	15	15			53.6	2.17	2.14	107.25
48	1	15	3.3	68	50.4	2.56	2.47	123.75
50	5	5			48.3	3.77	3.58	154.00

Vstart: Oscillation start voltage
Vhold: Oscillation hold voltage

Evaluation using an evaluation sample is required to determine the power consumption. The oscillator configuration diagram is shown in Figure 4-12.

Figure 4-12. Oscillator Configuration Diagram

Notes 1. The power consumption per cell ($\mu \mathrm{W} / \mathrm{Cell} / \mathrm{MHz}$) is specified under the following conditions:
$<1>$ Assume that the ratio of combination circuits, flip-flops, and latches in the circuit is as follows: Gates: Flip-flops : Latches $=0.5: 0.4: 0.1$.
$<2>$ Assume that the data frequency of latches is 1 MHz and that they operate 40% of the total time that the gates are active.
$<3>$ Assume that the clock frequency of flip-flops is 1 MHz and the data frequency is 0.25 MHz .
<4> Assume that the load of each output is $\Sigma \mathrm{F} / \mathrm{I}=2, L=1.64$ (F / I equivalent).
See APPENDIX A POWER CONSUMPTION (PRELIMINARY) if conditions have been modified to review the power consumption.
2. Gate operating factor

This is the percentage of the cells of the entire circuit that are operating in the same general time period.
For example, if 30% of the gates of a circuit are operating in the same period, the operating factor is 0.3.
3. Unit power consumption (under study)

The numerical values are listed in 4.3.3 Unit power consumption of memory.
4. Write and read operating factors

For example, if the RAM operating percentage is as shown in the figure above, then, $R_{\text {rm }}=0.3$ and $R w m=0.4$
5. Average operating frequency $\left(\mathrm{f}_{\mathrm{A}}\right)$

If operation is intermittent, the average operating frequency (f_{A}) can be investigated.
$f_{A}=f_{M} \times T_{M} \div T_{T}$
Тм: Actual operating interval
T : Intermittent operating cycle
f_{m} : Operating frequency of actual
operating interval

Notes 6. Constant power consumption
If direct current is flowing through the input, output, and bidirectional buffers, a constant power consumption is added.

Example 1. Direct current via the pull-up/pull-down resistor

$$
\text { PCONST }=\left(\mathrm{V}_{D D^{2}} / \mathrm{R}\right) \times \mathrm{A}
$$

VDD: Power supply voltage
R: Pull-up/pull-down resistance Use a typical value if the resistor is incorporated in the LSI

A: Operating factor
Low-level percentage when using a pull-up resistor, or high-level percentage when using a pull-down resistor The user should specify the operating factor based on the circuit specifications

Example 2. To drive items that require a large current, such as LEDs

$$
\text { PCONST }=\mathrm{VO} \times \mathrm{lo} \times \mathrm{A}
$$

Vo: Output voltage
lo: Output current
A: Percentage of LED ON time

Vpu: Pull-up voltage

4.3.3 Unit power consumption of memory

In the calculation formula for memory block power consumption in 4.3.2 Estimating power consumption, use the following values.
(1) Single-port RAM

Unit: mW/MHz			Unit: mW/MHz		
RAM Name	Pwm	PRM	RAM Name	Pwm	Prm
RB47	0.261	0.188	RBHH	5.880	3.04
RB49	0.285	0.198	RBKB	2.756	1.680
RB4B	0.570	0.396	RBKD	5.512	3.360
RB4D	0.336	0.191	RBKF	2.895	1.795
RB4F	0.672	0.382	RBKH	5.790	3.590
RB4H	1.344	0.764			

RAM Name	Pwm	Ряm
RB47	0.261	0.188
RB49	0.285	0.198
RB4B	0.570	0.396
RB4D	0.336	0.191
RB4F	0.672	0.382
RB4H	1.344	0.764
RB4M	2.688	1.528
RB4S	5.376	3.056
RB87	0.522	0.376
RB89	0.570	0.396
RB8B	0.579	0.359
RB8D	0.672	0.382
RB8F	0.735	0.380
RB8H	1.470	0.760
RB8M	2.940	1.520
RBAB	0.689	0.420
RBAD	1.378	0.840
RBAF	2.756	1.680
RBAH	5.512	3.360
RBC7	1.044	0.752
RBC9	1.140	0.792
RBCB	1.158	0.718
RBCD	1.344	0.764
RBCF	1.470	0.760
RBCH	2.940	1.520
RBCM	5.880	3.04
RBEB	1.378	0.840
RBED	2.756	1.680
RBEF	5.512	3.360
RBEH	11.024	6.720
RBH7	2.088	1.504
RBH9	2.280	1.584
RBHB	2.316	1.436
RBHD	2.688	1.528
RBHF	2.940	1.520

Remark Рwм: Power consumption during write operation
Prm: Power consumption during read operation
(2) Dual-port RAM

Unit: mW/MHz

RAM Name	Pwm	Prm
R947	0.256	0.079
R949	0.280	0.085
R94B	0.560	0.170
R94D	0.314	0.075
R94F	0.628	0.150
R94H	1.256	0.300
R987	0.512	0.158
R989	0.560	0.170
R98B	0.561	0.176
R98D	0.628	0.150
R98F	0.630	0.182
R9AB	0.654	0.211
R9AD	1.308	0.422
R9C7	1.024	0.316
R9C9	1.120	0.340
R9CB	1.122	0.352
R9CD	1.256	0.300
R9CF	1.260	0.364
R9EB	1.308	0.422
R9ED	2.616	0.844
R9H7	2.048	0.632
R9H9	2.240	0.680
R9HB	2.244	0.704
R9KB	2.616	0.844

Remark Ршм: Power consumption during write operation Prm: Power consumption during read operation

* 4.3.4 Compensation method

The results calculated by the formulas in 4.3.2 Estimating power consumption are values for $\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$. If different power supply or operating ambient temperature specifications are used, adjustments must be calculated using the following equation.

$$
\mathrm{Pw}=\left(\mathrm{PD} \times \mathrm{K}_{1}+\Sigma \mathrm{Pconst} \times \mathrm{K}_{2}\right) \times \mathrm{K}_{3}
$$

PD: Calculated result of total power consumption (including constant power consumption)
$\Sigma \mathrm{Pconst}$: Sum of constant power consumption only
K_{1} : Compensation coefficient (refer to Table 4-4)
K_{2} : Compensation coefficient (refer to Table 4-4)
K $_{3}$: Compensation coefficient (refer to Table 4-4)

The TYP. value is usually used to determine the power consumption.
However, the MAX. value is used when high reliability is demanded.
The MAX. value can also be used to calculate the maximum power consumption value in each power supply and temperature specification range.

Table 4-4. Compensation Coefficient ($\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$)
(a) $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

	TYP. Value	MAX. Value
Compensation coefficient $\left(\mathrm{K}_{1}\right)$	1.00	1.40
Compensation coefficient $\left(\mathrm{K}_{2}\right)$	0.00	0.15
Compensation coefficient $\left(\mathrm{K}_{3}\right)$	1.00	1.00

(b) $\mathrm{V}_{\mathrm{DD}}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

	TYP. Value	MAX. Value
Compensation coefficient $\left(\mathrm{K}_{1}\right)$	1.0000	1.4000
Compensation coefficient $\left(\mathrm{K}_{2}\right)$	0.0000	0.1500
Compensation coefficient $\left(\mathrm{K}_{3}\right)$	0.4356	0.4356

(c) $\mathrm{VDD}_{\mathrm{DD}}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

	TYP. Value	MAX. Value
Compensation coefficient $\left(\mathrm{K}_{1}\right)$	1.00	1.40
Compensation coefficient $\left(\mathrm{K}_{2}\right)$	0.00	0.15
Compensation coefficient $\left(\mathrm{K}_{3}\right)$	0.36	0.36

4.3.5 Determining power consumption

The power consumption is determined on the basis of whether or not the calculated power consumption (Pd) is within the maximum allowable power consumption (Pwl) specified for each package and master

The maximum allowable power consumption (PwL) specified for each package and master is listed in CMOS Gate Array, Embedded Array Package Design Manual (A16400E).

$$
P_{D} \leq P_{w L}
$$

The values in CMOS Gate Array, Embedded Array Package Design Manual (A16400E) are for $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ with natural convection. If a different maximum operating ambient temperature is used, the maximum allowable power consumption for the environment used must be calculated by means of the maximum junction temperature ($\mathrm{TJ}_{\text {(MAX.) }}$), the maximum ambient temperature (TA_{A} (MAX.)), and the thermal resistance (θ_{ja}) specified for each package and master. The thermal resistance (θ_{ja}) for each package and master is listed in the tables concerning thermal resistance in CMOS Gate Array, Embedded Array Package Design Manual (A16400E). Thermal resistance was measured under the conditions of a $90 \times 90 \mathrm{~mm}$ by 1.6 mm thick sample mounted on a glass-epoxy circuit board.

$$
P_{W L}=\frac{\left(T_{J}(\text { MAX. })-T_{A(M A X .)}\right)}{\theta_{j a}}(W)
$$

Condition: $\mathrm{TA}_{\text {(MAX. })} \geq 40^{\circ} \mathrm{C}$

4.4 Propagation Delay Time

4.4.1 Accuracy of propagation delay time

The propagation delay time (tpD) of a CMOS gate array fluctuates due to I/O buffers, internal function blocks, and the following factors:

Factors fluctuating propagation delay time

- Load capacitance (number of fan-outs, wiring capacitance)
- Power supply voltage
- Operating ambient temperature
- Manufacturing variation
- Other circuit-based factors

Circuit-based causes other than those related to power supply voltage, operating ambient temperature, and load capacitance include: fluctuation due to the input signal waveform, fluctuation in the equivalent input capacitance of the transfer gate, the Miller effect, and fluctuation in the input threshold voltage. NEC Electronics has introduced delay simulators and static delay calculators, taking these fluctuation factors into consideration as much as possible, so that a more precise propagation delay can be calculated. Thus, rough calculations of propagation delay time made by the user may not match the numerical values listed in the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOSN5 Series (3.3 V) Block Library (A15895E).

4.4.2 Calculation in propagation delay time

The calculation formula shown below is rough and simplified. The calculation results are comparatively accurate for a load range that satisfies the following conditions. The larger the load capacitance, the larger the error becomes and the smaller the calculated numerical result of the simulator becomes. With this prior understanding, this formula can be used as a guide.

> Conditions The sum of the prestage F/I of the block, which is the object of the delay calculation, is within 15% of the F/O limit of the prestage drive block.

Example

Let Block B be the object of the propagation calculation. The accuracy of the simplified calculation formula is high when the sum of the F / I connected to the output of block A is within 15% of the block A F/O limit.

If these details or the above conditions are not applicable, see APPENDIX B PROPAGATION DELAY TIME for methods to improve the calculation accuracy. The delay data for each block that is needed for the calculation is listed in the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E).

(1) Input buffer and internal function block delay time

The delay time of the internal function block and memory blocks can be calculated roughly from the load (number of fan-outs) connected to that output pin and the wiring length (wiring capacitance).

$$
\text { tPD }=t L D 0+(\Sigma F / O+L) \times t_{1}(n s)
$$

tldo: Delay time of the block itself with $\mathrm{F} / \mathrm{O}=0$ and $\mathrm{L}=0$
$\Sigma \mathrm{F} / \mathrm{O}$: Number of fan-outs of the relevant output pins
L: Wiring capacitance connected to the relevant output pins
(see 4.4.3 Estimating wiring capacitance)
t 1 : Delay coefficient of the relevant output pins

(2) Internal bus delay time

```
tpD \(=t L D 0+\{\Sigma \mathrm{F} / \mathrm{O}+\mathrm{L}+(\mathrm{N}-1) \times 1.38\} \times \mathrm{t}_{1}\) (ns)
```

tıdo: Delay time of the block itself with $\mathrm{F} / \mathrm{O}=0$ and $\mathrm{L}=0$
$\Sigma \mathrm{F} / \mathrm{O}$: Number of fan-outs connected to the bus
N: Sum of 3-state output buffers (F531, F532) connected to the bus
L: Wiring capacitance connected to the relevant output pins (see 4.4.3 Estimating wiring capacitance)
t : Delay coefficient of the relevant output pins
(3) Output buffer delay time

Using the following equation, the output buffer delay time can be roughly calculated from the load capacitance connected to the output pin.
tPD $=\mathrm{t} \mathrm{LD} 0+\mathrm{T} \times \mathrm{CL}_{\mathrm{L}}$ (ns)
tLDo: Delay time of the block itself with $\mathrm{CL}=0 \mathrm{pF}$
C : Load capacitance connected to the relevant output pin
T: Delay coefficient of the relevant output pin

The I/O buffer delay time is calculated under the following condition.
CMOS level interface: Threshold voltage $=1 / 2 \mathrm{~V} D D$

4.4.3 Estimating wiring capacitance

Since placement and routing is performed on the master based on the circuit connection information, the physical wiring length that is connected as a function block load is unknown before placement and routing of the gate array. Therefore, an estimation of the wiring lengths is made in order to calculate the propagation delay time before placement and routing. The wiring length estimation is calculated statistically based on the results of actual layouts, and most of the wiring length (70% of all routing) becomes shorter than the value specified as an assumed wiring length.

Table 4-5 shows estimated values of assumed wiring capacitances for the CMOS-N5 Series.
Placement and routing are executed for each hierarchical macro (top hierarchy). Consequently, wiring lengths within macros are shorter than wiring lengths between macros. The assumed wiring length is treated by the delay simulator in two categories: intramacro and intermacro. Table 4-5 shows top hierarchy intermacro estimates.

Table 4-5. Wiring Capacitance Estimate (Wiring Length Converted to F/I Value)
(1/2)

Master	Pin-Pair Count					
	1	2	3	4	5	6
μ PD65891	1.297	2.613	3.929	5.245	6.560	7.876
μ PD65880	1.621	3.266	4.911	6.556	8.200	9.845
μ PD65881	1.641	3.356	5.070	6.785	8.500	10.214
μ PD65892	1.674	3.423	5.171	6.921	8.670	10.418
$\mu \mathrm{PD} 65882$	1.684	3.552	5.421	7.289	9.158	11.027
μ PD65894	1.718	3.623	5.529	7.435	9.341	11.248
μ PD65883	1.730	3.767	5.803	7.840	9.876	11.913
$\mu \mathrm{PD} 65884$	1.757	3.892	6.026	8.161	10.295	12.430
$\mu \mathrm{PD} 65885$	1.780	3.997	6.213	8.430	10.647	12.863
$\mu \mathrm{PD} 65887$	1.819	4.175	6.532	8.889	11.245	13.602
μ PD65889	1.861	4.372	6.883	9.393	11.904	14.414
μ PD65890	1.904	4.569	7.233	9.897	12.562	15.226
μ PD65893	1.943	4.747	7.552	10.356	13.160	15.965

(2/2)

Master	Pin-Pair Count													
								7	16 to 20					
μ PD65891	9.192	10.508	11.823	13.139	19.718	26.297								
μ PD65880	11.490	13.135	14.779	16.424	24.648	32.871								
μ PD65881	11.929	13.644	15.358	17.073	25.647	34.220								
μ PD65892	12.168	13.917	15.665	17.414	26.160	34.904								
μ PD65882	12.895	14.764	16.632	18.501	27.844	37.187								
μ PD65894	13.153	15.059	16.965	18.871	28.401	37.931								
μ PD65883	13.949	15.986	18.022	20.059	30.241	40.424								
μ PD65884	14.564	16.699	18.833	20.967	31.640	42.312								
μ PD65885	15.080	17.297	19.513	21.730	32.813	43.897								
μ PD65887	15.958	18.315	20.672	23.028	34.811	46.594								
μ PD65889	16.925	19.435	21.946	24.456	37.009	49.561								
μ PD65890	17.891	20.555	23.220	25.884	39.206	52.528								
μ PD65893	18.769	21.574	24.378	27.182	41.204	55.226								

« 4.4.4 Fluctuation in propagation delay time

The propagation delay time (tpD) fluctuates due to I/O buffers and internal function blocks, and a variety of other reasons, as described in 4.4.1 Accuracy of propagation delay time. The CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E) indicates the minimum and maximum values under the conditions:

$$
V_{D D}=5.0 \mathrm{~V} \pm 10 \% / V_{D D}=3.3 \pm 0.3 \mathrm{~V} \text { and } \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\left(\mathrm{~T}_{J}=-40 \text { to }+125^{\circ} \mathrm{C}\right)
$$

The difference between the typical value and these values is called the degrading factor. The propagation delay coefficient is listed for the minimum, typical, and maximum specifications in the CMOS-N5 Series.

With the CMOS-N5 Series, the degrading factor of each block is studied to improve the accuracy of calculation of the propagation delay time. Therefore, a uniform degrading factor cannot be used, unlike with conventional products. However, Figure 4-13 (a) through (c) shows, for reference, the dependency of the delay coefficient on the power supply voltage and operating junction temperature. The coefficient of the degrading factor can be recalculated by limiting the operating ambient temperature and power consumption (for example, by limiting the temperature rise due to power consumption to about $10^{\circ} \mathrm{C}$). The operating junction temperature when the operating ambient temperature or power consumption is limited can be calculated by the formula below. The lower the operating junction temperature, the closer to 1 the coefficient of the degrading factor (if the operating junction temperature is limited to $100^{\circ} \mathrm{C}$, the delay time is 5% shorter than when the operating junction temperature is limited to $125^{\circ} \mathrm{C}$).

$$
\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}(\mathrm{MAX} .)}+\mathrm{PD} \times \theta_{\mathrm{ja}} \quad\left({ }^{\circ} \mathrm{C}\right)
$$

TJ: Operating junction temperature
$\mathrm{T}_{\mathrm{A}(\mathrm{MAX} .)}$: Maximum value of operating ambient temperature
Pd: Power consumption estimated by the calculation formula in 4.3.2 Estimating power consumption
θ_{ja} : Thermal resistance (See the tables concerning thermal resistance in CMOS Gate Array, Embedded Array Package Design Manual (A16400E))

Please note that since Figure 4-13 (a) through (c) shows the average values of the delay distribution (variations in the process are already included in the value of the power supply voltage), the guaranteed values are the result of simulation.

Reference data

$$
\begin{aligned}
& \left.\operatorname{Rmax}^{\prime}=\operatorname{Rv}_{\text {(max. }}\right) \times \operatorname{Rt}(\text { max. }) \\
& \operatorname{Rmin}_{\text {m }}=\operatorname{Rv}(\text { min. }) \times \operatorname{Rt}(\min .) \\
& \operatorname{tPD}(\operatorname{MAX})=\operatorname{tPD}(\text { TYP. }) \times \operatorname{RMAX} . \\
& \operatorname{tPD}(M I N)=\operatorname{tPD}(T Y P .) \times R M I N .
\end{aligned}
$$

Standard specification: CMOS interface condition (VDD $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{J}}=-40\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$)

Rmax. $=2.05$
Rмім. $=0.64$

Calculation example
Derive Rmax./Rmin. for $V_{d D}=5.0 \mathrm{~V} \pm 10 \%$ and $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}\left(\mathrm{T}_{J}=-40\right.$ to $\left.+120^{\circ} \mathrm{C}\right)$.
(1) Derive Rv from Figure 4-13 (a) and (b):
$\operatorname{Rv}_{\text {(max. })}=1.44$
$R v$ (min.) $=0.62$
(2) Next, derive Rt from Figure 4-13 (c):
R_{t} (max.) $=1.42$
R_{T} (min.) $=1.04$
(3) Accordingly, it follows that,
R max. $=R v($ max. $) \times \operatorname{Rt}$ (max.) $=1.44 \times 1.42$
$\operatorname{Rmin} .=\operatorname{Rv}(\min .) \times R t(\min)=.0.62 \times 1.04$
Rmax. $=2.044$
Rmin. $=0.645$

Figure 4-13. Propagation Delay Time
(a) Vod dependency (MAX.)

(b) Vod dependency (MIN.)

(c) Ts dependency

In addition to the degrading factor applicable from the device specification, there is also the relative variation generated by the chips internal paths and by the manufacture of the P -ch and N -ch transistors. This relative variation is an important factor in verifying the timing of the circuit. The CMOS-N5 Series's relative variation is as follows (this also applies when the power supply voltage specification is 3.3 V).

$$
\text { Relative variation } \alpha=10 \%
$$

Figure $4-14$ shows the variation with $\operatorname{tPD}(T Y P$.$) as the typical value.$

Figure 4-14. tpd Variation

4.5 Output Buffer Characteristics

4.5.1 Output buffer rise and fall times

The rise and fall times of the output buffer vary greatly according to differences in the drive capability due to the output level and to the connected load capacitance. The output buffer rise and fall times (tr, tf) can be calculated as follows:

```
tr = tro + Ftr }\times\textrm{CL}(\textrm{ns}
tf = tfo + Fff }\times\mp@subsup{C}{L}{(ns)
```

tro: Reference rise time (load capacitance, $\mathrm{CL}=0 \mathrm{pF}$)
to: Reference fall time (load capacitance, $C \mathrm{~L}=0 \mathrm{pF}$)
$F_{t r}, F_{t t}$ Load capacitance coefficient
CL: Load capacitance (pF) ($0<\mathrm{Cl}_{\mathrm{L}} \leq 300 \mathrm{pF}$)

Refer to Tables 4-6 and 4-7 for output buffer coefficients.

Table 4-6. tr_{r} and tf_{t} Calculation Coefficients of Output Buffer ($\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Buffer Type	Output Level	Drive Capability	tro	F_{tr}	tio	F_{Hf}
Normal type	cMOS	$\mathrm{loL}=3.0 \mathrm{~mA}$	0.817	0.1562	1.279	0.2654
		$\mathrm{loL}=6.0 \mathrm{~mA}$	0.611	0.1035	0.716	0.1319
		$\mathrm{loL}=9.0 \mathrm{~mA}$	0.502	0.0611	0.603	0.0867
		$\mathrm{loL}=12.0 \mathrm{~mA}$	0.388	0.0510	0.443	0.0651
		$\mathrm{loL}=18.0 \mathrm{~mA}$	0.394	0.0345	0.494	0.0426
		$\mathrm{loL}=24.0 \mathrm{~mA}$	0.413	0.0266	0.623	0.0305
Low-noise type	cmos	$\mathrm{loL}=3.0 \mathrm{~mA}$	1.210	0.1532	1.554	0.2621
		$\mathrm{loL}=6.0 \mathrm{~mA}$	1.112	0.1018	1.118	0.1296
		$\mathrm{loL}=9.0 \mathrm{~mA}$	1.097	0.0631	0.990	0.0876
		$\mathrm{loL}=12.0 \mathrm{~mA}$	1.116	0.0542	0.938	0.0678
		$\mathrm{loL}=18.0 \mathrm{~mA}$	1.213	0.0415	0.935	0.0492
		$\mathrm{loL}=24.0 \mathrm{~mA}$	1.333	0.0352	1.013	0.0389

Remark The rise and fall times of the output buffer are specified by the following conditions:
CMOS level $=\mathrm{V}_{\mathrm{DD}} \times 10 \%$ to $\mathrm{V} D \mathrm{x} \times 90 \%$, input signal $\mathrm{tr}, \mathrm{tf}=0.4 \mathrm{~ns}(\mathrm{~V} D=5.0 \mathrm{~V})$

Table 4-7. tr_{r} and t_{t} Calculation Coefficients of Output Buffer ($\mathrm{VdD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Buffer Type	Output Level	Drive Capability	tro	$\mathrm{F}_{\text {tr }}$	tro	F_{tf}
Normal type	cMOS	$\mathrm{loL}=3.0 \mathrm{~mA}$				
		$\mathrm{loL}=6.0 \mathrm{~mA}$	0.817	0.1562	1.279	0.2654
		$\mathrm{loL}=9.0 \mathrm{~mA}$	0.611	0.1035	0.716	0.1319
		$\mathrm{loL}=12.0 \mathrm{~mA}$	0.502	0.0611	0.603	0.0867
		$\mathrm{loL}=18.0 \mathrm{~mA}$	0.388	0.0510	0.443	0.0651
		$\mathrm{loL}=24.0 \mathrm{~mA}$	0. 394	0.0345	0.494	0.0426
Low-noise type	cmos	$\mathrm{loL}=3.0 \mathrm{~mA}$				
		$\mathrm{loL}=6.0 \mathrm{~mA}$	1.210	0.1532	1.554	0.2621
		$\mathrm{loL}=9.0 \mathrm{~mA}$	1.112	0.1018	1.118	0.1296
		$\mathrm{loL}=12.0 \mathrm{~mA}$	1.097	0.0631	0.990	0.0876
		$\mathrm{loL}=18.0 \mathrm{~mA}$	1.116	0.0542	0.938	0.0678
		$\mathrm{loL}=24.0 \mathrm{~mA}$	1.213	0.0415	0.935	0.0492

Remarks 1. The rise and fall times of the output buffer are specified by the following conditions:
CMOS level $=\mathrm{V} D \mathrm{D} \times 10 \%$ to $\mathrm{VDD} \times 90 \%$, input signal $\mathrm{tr}, \mathrm{t}=0.4 \mathrm{~ns}(\mathrm{~V} D \mathrm{D}=3.3 \mathrm{~V})$
2. Blank: Under study

4.5.2 Recommended load capacitance range of output buffers

The maximum allowable load capacitance $\mathrm{CL}_{\text {(MAX.) }}$ of the output buffer should be $\mathrm{CL}_{\mathrm{L}(\mathrm{MAX} .)} \leq 300 \mathrm{pF}$. In addition, Tables $4-8$ and 4-9 show the recommended load capacitance range for each drive capability of the output buffer. The optimal output buffer based on Tables 4-8 and 4-9 should be selected. In particular, if a load capacitance outside the recommended range is used, it must be noted that the overshoot and undershoot generated in the output signal increases if a lower load capacitance is used.

Table 4-8. Recommended Load Capacitance Ranges of Output Buffers (@5.0 V)

Buffer Type	Output Level	IoL (mA)	Recommended Load Capacitance Range (pF)	Example of Corresponding Block
Normal type	CMOS	3.0	0 to 40	FO09
		6.0	0 to 110	FO04
		9.0	25 to 130	FO01
		12.0	100 to 210	FO02
		18.0	120 to 300	FO03
		24.0	170 to 300	FO06
	3.0	0 to 40	FE09	
	CMOS	6.0	0 to 100	FE04
		9.0	15 to 150	FE01
		12.0	20 to 200	FE02
		18.0	50 to 200	FE03
		24.0	40 to 210	FE06

$\star \quad$ Table 4-9. Recommended Load Capacitance Ranges of Output Buffers (@3.3 V)

Buffer Type	Output Level	IoL (mA)	Recommended Load Capacitance Range (pF)	Example of Corresponding Block
Normal type	CMOS	3.0	0 to 20	FO09
		6.0	0 to 40	FO04
		9.0	0 to 110	FO01
		25 to 130	FO02	
		12.0	100 to 210	FO03
		18.0	Fow-noise type	24.0

4.5.3 Maximum operating frequency of output buffers

The maximum operating frequency of the output buffer is determined by the drive capability and the load capacitance. As explained in 4.5.2 Recommended load capacitance range of output buffers, there are recommended ranges for load capacitance. The shaded parts of the graphs in Figures $4-15$ and 4-16 correspond to these ranges.

The parts to the right of the shaded part can be used if there are no problems with the propagation delay time, rise time, and fall time. On the other hand, be aware that the overshoot and undershoot in the parts to the left of the shaded part are large.

Figure 4-15. fmax. vs. CL Limit (CMOS Level Output) (1/2)
(a) loL = $3.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

(c) $\mathrm{IoL}=6.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$ lol $=9.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

Load capacitance $C_{L}(\mathrm{pF})$
(b) $\mathrm{loL}=3.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$

IoL $=6.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

(d) $\mathrm{IoL}=9.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$ IoL $=12.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

Figure 4-15. fmax. vs. CL Limit (CMOS Level Output) (2/2)
(e) $\mathrm{IoL}=12.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$ loL $=18.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

(g) loL $=24.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$

Figure 4-16. fmax. vs. CL Limit (CMOS Level Low-Noise Output) (1/2)
(a) loL $=3.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

(c) $\mathrm{IoL}=6.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$ lol $=9.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

(b) $\mathrm{IoL}=3.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$
loL $=6.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$
(d) Iol $=9.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$ loL $=12.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

Figure 4-16. fmax. vs. Cl Limit (CMOS Level Low-Noise Output) (2/2)
(e) $\mathrm{IoL}=12.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$ loL $=18.0 \mathrm{~mA}$ (@3.3 V)

(f) $\mathrm{IoL}=18.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$
loL $=24.0 \mathrm{~mA}(@ 3.3 \mathrm{~V})$

(g) loL $=24.0 \mathrm{~mA}(@ 5.0 \mathrm{~V})$

4.5.4 Output buffer output current (IOL, Iон)

NEC Electronics defines the output current of a CMOS gate array at $\mathrm{Vol}=0.4 \mathrm{~V}$ and $\mathrm{Voh}=\mathrm{VdD}-0.4 \mathrm{~V}$. However, there are cases in which the Vol and Vor that are used differ for actual applications. In such cases, the coefficients shown in (1) to (3) below should be used in estimating the loz and Ioн characteristics in accordance with the actual conditions.

Output current calculation

$\mathrm{lot}=\mathrm{loL} \times \mathrm{Kv} \times \mathrm{K}_{\mathrm{T}}(\mathrm{mA})$
$\mathrm{IOH}^{\prime}=\mathrm{IOH} \times \mathrm{Kv} \times \mathrm{KT}^{(\mathrm{mA})}$
lol: lol specification when Vol $=0.4 \mathrm{~V}$
Kv: Voltage coefficient
K_{T} : Temperature coefficient

(1) Dependency on power supply voltage

The dependency on the power supply voltage is shown in Figure 4-17.

Figure 4-17. Vdd Dependency of lol / Іон

(2) Dependency on operating ambient temperature

The dependency on the operating ambient temperature is shown in Figure 4-18.

Figure 4-18. TA Dependency of lol / Іон

(3) Dependency on output voltage

Vol $=0.4$ to 0.6 V , $\mathrm{Voh}=(\mathrm{VDD}-0.4 \mathrm{~V})$ to $(\mathrm{Vdd}-0.6 \mathrm{~V})$
....... Because lol and loh vary almost proportionately to the output voltage, a direct approximation is possible. However, this excludes the Іон of the TTL level output buffer.

Equations for estimating the output buffer current

$$
\begin{aligned}
& \mathrm{loL}=\mathrm{IoL} \times \mathrm{VoL} / 0.4 \\
& \mathrm{IOH}^{\prime}=\mathrm{IOH} \times(\mathrm{VDD}-\mathrm{VOH}) / 0.6(\mathrm{~mA})
\end{aligned}
$$

lol: lol specification when Vol $=0.4 \mathrm{~V}$
Vol: Vol value used
Іон: Іон specification when $\mathrm{VoH}=(\mathrm{V}$ dd $-0.4 \mathrm{~V})$
Vон: Уон value used

The lo vs. Vo curves are shown in Figures 4-19 and 4-20. The MIN. curve is shown for the conditions VDD= 4.5 V and $\mathrm{T} J=125^{\circ} \mathrm{C}$. The TYP. curve is shown for the conditions $\mathrm{VDD}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. The MAX. curve is shown for the conditions $\mathrm{VDD}=5.5 \mathrm{~V}$ and $\mathrm{TJ}=-40^{\circ} \mathrm{C}$. The direct currents loн and lot that can actually be used should be within the absolute maximum ratings.

Figure 4-19. Io vs. Vo (@5.0 V) (1/2)
(1) $\mathrm{IoL}=3 \mathrm{~mA}$
(a) lol vs. Vol

(b) $\mathrm{loн}_{\mathrm{o}}$ vs. $\mathrm{Voн}_{\mathrm{o}}$

(2) $\mathrm{IoL}=6 \mathrm{~mA}$
(a) Iol vs. Vol

(b) Іон vs. Vон

(3) $\mathrm{IoL}=9 \mathrm{~mA}$
(a) lol vs. Vol

(b) Іон vs. Vон

Figure 4-19. Io vs. Vo (@5.0 V) (2/2)
(4) $\mathrm{IoL}=12 \mathrm{~mA}$
(a) lol vs. Vol
(b) Іон vs. Vон

(5) $\mathrm{IoL}=18 \mathrm{~mA}$
(a) Iol vs. Vol

(6) $\mathrm{loL}=24 \mathrm{~mA}$
(a) lol vs. Vol

146
Design Manual A13826EJ7V0DM
(b) Іон vs. Vон

Figure 4-20. Io vs. Vo (@3.3 V) (1/2)
(1) $\mathrm{IoL}=3 \mathrm{~mA}$

(2) $\mathrm{IoL}=6 \mathrm{~mA}$

(3) $\mathrm{IoL}=9 \mathrm{~mA}$
(a) Iol vs. VoL

(b) Іон vs. Vон

Figure 4-20. Io vs. Vo (@3.3 V) (2/2)
(4) $\mathrm{IoL}=12 \mathrm{~mA}$

(5) $\mathrm{loL}=18 \mathrm{~mA}$
(a) Iol vs. Vol

(6) $\mathrm{IoL}=24 \mathrm{~mA}$
(a) lot vs. Vol

(b) Іон vs. Vон

(b) Іон vs. Vон

4.6 Restrictions to Simultaneous Operation of Output Buffers

4.6.1 Malfunction due to simultaneous operation of outputs

When the output buffer operates, a current that charges/discharges the output load capacitance flows between the load and LSI. If the current is too large, noise is generated in the power supply line, resulting in the malfunction of the system.

There are two types of malfunctions:
<1> The LSI malfunctions due to fluctuation in the LSI input threshold level
$<2>$ The next stage circuit malfunctions due to noise appearing at the LSI output pin

The cause of malfunction due to simultaneous operation of output buffers is described as follows.

The circuit in Figure 4-21 (a) can be considered when LSI B's output buffer is switched from " H " to " L ". When this happens, the current discharged from the load flows to GND via the power supply line of LSI B. As a result of this discharge current and the impedance of the GND line, the power supply to the GND line decreases and the GND level $\left(V_{G}\right)$ inside LSI B increases. If the output buffer switches from "L" to " H ", the current that charges the load capacitance flows, and noise is generated in the power supply line. As a result, Vod temporarily decreases.

When many output buffers simultaneously operate, if the capacity of the load to be driven becomes large, the voltage level inside the LSI chip fluctuates due to the charge/discharge current, which may result in malfunction, as shown in Figure 4-21 (b) and (c).

To prevent such malfunctions, the number of simultaneously operating output buffers must be limited. The number of output buffers that can simultaneously operate differs depending on the following five factors:
<1> Numbers of VDD and GND
<2> Load capacity (CL)
$<3>$ Load drive capability of the output buffer to be used (loL)
<4> Type of input interface level
<5> Type of output interface level

Figure 4-21. Malfunction Caused by Simultaneous Operation
(a) Circuit diagram

VoA: Output level of LSI A
Vob: Output level of LSI B
VthB: Input threshold level of LSI B
Vthc: Input threshold level of LSI C
VG: GND level of LSI B
(b) Fluctuation in input threshold level of LSI B

(c) Generated noise moving to the output pin of LSI B

4.6.2 Definitions

Output simultaneous operation is the switching of multiple output buffers in the same direction $(H \rightarrow L, H Z \rightarrow L$ or $\mathrm{L} \rightarrow \mathrm{H}, \mathrm{HZ} \rightarrow \mathrm{H}$) within a fixed time (see Table 4-10) as a result of conditions such as the buffer type and load capacitance. Output simultaneous operation is counted for each operation, and the respective simultaneous operation limits apply independently.

The following switching of signals is considered one output simultaneous operation group.
(1) Output signal switching from $H \rightarrow L, H Z \rightarrow L, X \rightarrow L, H \rightarrow X$
(2) Output signal switching from $L \rightarrow H, H Z \rightarrow H, X \rightarrow H, L \rightarrow X$

Remark HZ: High impedance, X: Undefined

Output signal switching from $\mathrm{L} \rightarrow \mathrm{HZ}$ and $\mathrm{H} \rightarrow \mathrm{HZ}$ is not counted as simultaneous operation. For bidirectional pins, operating that occurs during switching from input to output must also be considered.

Table 4-10. Reference Time Ranges for Simultaneous Operation (TYP.)

Buffer Type	Load Capacitance $C_{L}(\mathrm{pF})$		
	$0 \leq \mathrm{CL} \leq 50$	$50<\mathrm{CL}_{\mathrm{L}} \leq 200$	$200<\mathrm{C}_{\mathrm{L}} \leq 300$
3.0 mA	$\leq 2.5 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$	$\leq 6.0 \mathrm{~ns}$
6.0 mA	$\leq 3.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$	$\leq 6.0 \mathrm{~ns}$
9.0 mA	$\leq 3.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$	$\leq 6.0 \mathrm{~ns}$
12.0 mA	$\leq 3.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$	$\leq 6.0 \mathrm{~ns}$
18.0 mA	$\leq 3.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$	$\leq 6.0 \mathrm{~ns}$
24.0 mA	$\leq 3.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$	$\leq 6.0 \mathrm{~ns}$

4.6.3 Factors for the determination of simultaneous operation

Because noise generated by charge/discharge currents is the cause of malfunction, the number of simultaneously operating output pins is limited by the following factors:
(1) Drive capability of the output buffers
(2) Load capacitance
(3) Number of output simultaneous operation pins
(4) Number of LSI power supply pins
(5) Routing pattern of GND and power supply on the circuit board
(6) Placement of the output simultaneous operation pins
(7) Input buffer types

Items (1), (2), and (3) specify the charge/discharge current, and item (7) specifies the LSI's noise margin using the input buffer interface. Items (4) and (5) restrict the inductance of the closed loop through which the charge/discharge current flows. Therefore, these items cannot be specified quantitatively. The simultaneous operation limit specified by NEC Electronics has a default value for the impedance of this loop. It is therefore possible that noise will be generated, depending on the particular user's circuit board layout. Adequate noise countermeasures must be incorporated into the design of the circuit board.

4.6.4 Simultaneous operation pins to be checked

Simultaneous operation of outputs should be checked for output buffer groups that meet the conditions explained below.

Conditions

(1) When buffers are driven in parallel by a shared internal block, or one signal output from a shared internal block is split into multiple buffers due to the fan-out limit, and the buffers are driven in parallel.

(2) When the output buffers are driven by sequential circuits operated by a shared control signal and when, due to the delay time of the combination circuits, the operation timing differential of the distributed output buffers is less than the simultaneous operation reference time for each buffer and load capacitance shown in Table 4-10 Reference Time Ranges for Simultaneous Operation (TYP.) .

(3) When, due to identical timing of the external input, the timing differential of output buffer operation is less than the simultaneous operation reference time for each buffer and load capacitance shown in Table 4-10 Reference Time Ranges for Simultaneous Operation (TYP.).

Determination of the simultaneous operation reference time (described in Table 4-10 Reference Time Ranges for Simultaneous Operation (TYP.)) is performed by the simple total of the tLDo (TYP.) values listed in the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E).

However, checking for simultaneous operation of outputs is not performed in those cases in which the following conditions apply:

- The operation timing differential of the output buffer is greater than the simultaneous operation reference time for each buffer and load capacitance shown in Table 4-10 Reference Time Ranges for Simultaneous Operation (TYP.).
- Operation does not occur other than during initialization (set and reset).
(Because malfunctions due to simultaneous operation are absorbed by initialization.)

4.6.5 Pin placement and simultaneous operation

The size of closed loop inductance, through which the charge/discharge currents of the output buffers flow, determines the size of the generated noise. The inductance of this closed loop depends on the LSI pin placement and the circuit board on which the LSI is mounted. Care must be taken in placing pins in order to control noise caused by simultaneous operation.

- As far as possible, avoid placing input pins in the output buffers that operate simultaneously.
- Locate input pins (especially clock input pins) susceptible to noise as close to the GND pin as possible. Separate these pins as far as possible from output buffers that operate simultaneously.
- Separate output buffers that operate simultaneously as far as possible from the input pins, and enclose them by GND pins.
- If it is difficult to enclose output buffers that operate simultaneously by GND pins, disperse the buffers as much as possible. In any case, separate the output buffers that operate simultaneously as far as possible from the input pins.
- Increase the number of GND/VDD pins at a rate of one VdD to two GND.

4.6.6 Three-GND-pin determination

By this method, a determination is made not for the number of GND and VDD pins of the LSI, but for three GND pins. Therefore, locations at which simultaneous operation is concentrated can be taken into consideration.

Simultaneous operation is assessed by the output buffer type, output load capacitance, and the number of valid GND pins. Table 4-11 shows the number of pins that can operate simultaneously between three valid GND pins. Because the permissible number of simultaneous operation pins when a 12 mA output buffer is used is shown in this table, calculate the permissible number of pins by using the coefficient shown in Table 4-12 if a buffer with a different driving capability and output level is used.

If the driving capability is the same when los is a value other than 12 mA , divide the values in Table 4-11 by the coefficient in Table 4-12.

```
Iol = Permissible number of simultaneous operation pins between 3GND pins with 12 mA/Coefficient
```


Criteria if drive capability or load capacitance is different

In the case of buffers with different driving capabilities, the following expression must be used to calculate the permissible number of simultaneous operation pins $\left(\mathrm{Mi}_{\mathrm{i}}\right)$ in Table 4-11, taking the number of simultaneous operation pins (mi) and coefficient (β_{i}) of each driving capability into consideration.

```
\Sigma(mi x \betai/Mi) \leq 1
```

$$
\begin{array}{llccc}
\text { Calculation example } & \text { loL }=18 \mathrm{~mA} & \text { CMOS level } & 30 \mathrm{pF} & 5 \mathrm{pcs} . \\
& \text { loL }=24 \mathrm{~mA} & \text { CMOS level } & 50 \mathrm{pF} & 2 \mathrm{pcs} . \\
& 5 \times 1.189 \div 12.5+2 \times 1.266 \div 10 \leq 1 &
\end{array}
$$

BGA package determination

Determination is performed for the internal chip in the BGA package. For internal chip pin layout, see the tables concerning assignment of Vdd, GND, NC, and SCAN test pins in CMOS Gate Array, Embedded Array Package Design Manual (A16400E).

Table 4-11. Permissible Number of Simultaneous Operation Pins Between 3 GND Pins (lol = 12 mA)
(1) 5.0 V
(a) When inputs are CMOS-level inputs only

Valid Number of GND	Output Load Capacitance (CL)					
	15 pF	30 pF	50 pF	100 pF	150 pF	200 pF
$1^{\text {Note }}$	13.0	8.5	6.3	4.8	4.3	3.8
3	19.5	12.5	10	7.5	6.5	6

(b) When inputs are TTL-level inputs only and when inputs are mixture of TTL-level inputs and CMOS-level inputs

Valid Number of GND	Output Load Capacitance (CL)					
	15 pF	30 pF	50 pF	100 pF	150 pF	200 pF
$1^{\text {Note }}$	5.2	4	2.8	1.9	1.6	1.5
3	8	5	4.5	3	2.5	2.5

(2) 3.0 V and 3.3 V

Valid Number of GND	Output Load Capacitance (CL)						
	15 pF	30 pF	50 pF	100 pF	150 pF	200 pF	
$1^{\text {Note }}$	4.3	4.0	3.8	3.5	3.3	3.0	
3	6.5	6	6	5.5	5	5	

Note For a small-pin-count package

Remarks 1. Calculate the valid amount of capacitance not in the table by complementing linearly.
2. Count adjacent GND pins, including those sandwiching a corner on the layout, as one.

Table 4-12. Coefficient of Number of Simultaneous Operation Pins
(a) 5.0 V

Output Level	loL (mA)	Coefficient	Example of Corresponding Block
CMOS normal type	3.0	0.467	FO09, B00T
	6.0	0.746	FO04, B00E
	9.0	0.757	FO01, B008
	12.0	1.000	FO02, B007
	18.0	1.189	FO03, B009
	24.0	1.266	FO06, B00H
CMOS low-noise type	3.0	0.287	FE09, BEOT
	6.0	0.465	FE04, BE0E
	9.0	0.483	FE01, BE08
	12.0	0.500	FE02, BE07
	18.0	0.530	FE03, BE09
	24.0	0.625	FE06, BE0H

(b) 3.0 V and 3.3 V

Output Level	IoL (mA)	Coefficient	Example of Corresponding Block
CMOS normal type	3.0	0.395	FO09, B00T
	6.0	0.575	FO04, B00E
	9.0	0.618	FO01, B008
	12.0	1.000	FO02, B007
	18.0	1.076	FO03, B009
	24.0	1.116	FO06, B00H
CMOS low-noise type	3.0	0.277	FE09, BEOT
	6.0	0.380	FE04, BE0E
	9.0	0.453	FE01, BE08
	12.0	0.500	FE02, BE07
	18.0	0.523	FE03, BE09
	24.0	0.533	FE06, BE0H

4.6.7 Assumptions for the determination method

The determination of simultaneous operation is also affected significantly by the power supply and GND pins of the circuit board.

It is assumed by the determination method that simultaneous operation is considered for comparative circuit board and LSI pin placements. The reference values are determined based on this assumption. Consequently, if the routing pattern of a circuit board is narrow (especially the power supply and GND routing), or if the closed loop from the power supply wiring on the circuit board through the LSI and GND wiring on the circuit board and back to the power supply wiring is long, and the impedance is large, then the noise generated by simultaneous operation will become greater than the noise level specified by the determination method. This must be kept in mind in order to avoid problems.

In such a case, it is effective to shorten the above closed loop by means of a bypass capacitor.

4.6.8 Other determination methods

The methods explained below must be used if the determination reference cannot be satisfied by the standard power supply and number of GND pins.

(1) Increasing VDD and GND pins

Increase the VDD and GND pins so that the condition of the number of simultaneous operation pins is satisfied. Increase the number of pins at a ratio of one Vdd pin to two GND pins.

(2) Re-examine the applicable environment

<1> Reduction of output load capacitance
The size of the noise generated by charge/discharge currents that flow when the output changes depends on the size of the output load capacitance. Consequently, the size of the generated noise can be reduced by reducing the load capacitance, thereby increasing the allowable number of simultaneous operation pins.

<2> Modification of buffer type

The peak values of the output charge/discharge currents depend on the buffer drive capability and the buffer function. By changing to a buffer type with a lower drive capability or to a low-noise buffer, the generated noise can be controlled and the allowable number of simultaneous operation pins can be increased.
<3> Reduce simultaneous operation pins by adding delay time
Output simultaneous operation is the switching of multiple output buffers in the same direction $(H \rightarrow L$, $H Z \rightarrow L$ or $L \rightarrow H, H Z \rightarrow H$) within a fixed time (see Tables 4-8 and 4-9), as determined by conditions such as the buffer type and load capacitance. Consequently, if delay time is added to the simultaneously operating output pins and the operating time does not fall within the time specified in Table 4-10 Reference Time Ranges for Simultaneous Operation (TYP.), then it becomes unnecessary to consider these pins as operating simultaneously, and the number of simultaneous operation pins is thereby reduced.

Remark HZ: High impedance

CHAPTER 5 CIRCUIT DESIGN GUIDELINES

This chapter explains the points to be noted and limits to be applied in designing a circuit.
When designing an LSI using CMOS gate arrays, once a circuit has been designed it cannot be easily modified, unlike when designing a circuit using standard TTL or CMOS ICs.

It is therefore important to observe the limits and follow the design rules described in CHAPTER 2 IMPLEMENTING THE SYSTEM USING THE GATE ARRAY, CHAPTER 4 ESTIMATING ELECTRICAL CHARACTERISTICS, and this chapter to design an LSI without errors.

If an LSI is designed without observing the design rules, not only is the development period after interfacing with NEC Electronics extended, but also the product may need to be re-developed.

5.1 Basic Circuit Configuration

5.1.1 Using I/O buffers

When designing an LSI with gate arrays, place input/output buffers between the LSI and the input/output pins (see

Figure 5-1).

Reasons: <1> To protect the LSI from destruction due to static electricity <2> To obtain sufficient output drive capability

Figure 5-1. Basic Circuit Configuration

5.1.2 Unused pins

With gate arrays, unused input pins cannot be left open (the state where they are not connected to anything) in any block. The pins must be input at either a high or low level by using F091 (H-and L-level generator). If a block's input pins are left open, it cannot function correctly since the input level is undetermined. This condition also becomes a source of increased IL (leakage current). In addition, large fan-outs should be avoided when F091 is used. If several blocks are clamped to a single block, the routing becomes concentrated, making placement and routing difficult. In such a case, divide the circuit by a certain unit to avoid routing concentration.

A warning error will be posted by the tester during a design rule check if the block's output pins have been left open. Discard unnecessary blocks.

5.1.3 Fan-out limitations

There are limitations on the number of charged gates that can be connected to a block's output pins (the fan-out number). The recommended fan-outs for each block (including the fan-in number) are given in the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E).

Because signal rise and fall times increase when the number of charged gates increases, the estimation accuracy of the propagation delay time becomes lower. Moreover, if rise and fall times become very long, data-through develops in the flip-flops causing abnormal logic operation. Therefore, do not exceed the fan-out restrictions when designing.

Be sure also to design with fan-out numbers that are $1 / 3$ of the limit in circuits that have strict speed specifications.

5.1.4 Wired logic circuit prohibitions

Other than for the bus, do not configure wired logic as mutually connected block outputs.
The P-ch transistors and the N -ch transistors become conductive at the same time as a function of the logic state if the outputs of the block are connected to each other. Pay attention to this since the steady low-power characteristics that are a feature of CMOS circuits can be lost when the output is at an intermediate level because current can flow from VDD to GND.

Figure 5-2. Wired Logic Circuit Prohibitions

5.1.5 Notes on using bidirectional buffers

If an output signal is input as is to an internal circuit with a bidirectional buffer, the internal circuit that receives this input signal may malfunction due to distortion of the output waveform and ringing as shown in Figure 5-3. Take special care to avoid inputting input signals to the clock of the flip-flop. In the output mode, make sure that the signal immediately before the output buffer is input to the internal circuit as shown in Figure 5-4.

Figure 5-3. Ringing

Figure 5-4. Example of Preventive Circuit

5.2 Differential Circuit Prohibition

As a rule, differential circuits should not be configured from gate arrays. Since gate-array placement and routing design is done automatically, the range of waveforms that are internally generated cannot be guaranteed with gate arrays, and the desired functions will not materialize. Therefore, avoid structuring the circuit shown in Figure 5-5 (a); instead structure the circuit as shown in Figure 5-5 (b).

Figure 5-5. Differential Circuit Prohibition
(a) Example of incorrect circuit

(b) Example of correct circuit

5.3 RS Latch and Loop Circuits

5.3.1 RS latch

Gate-configured asynchronous RS latches should not be used with gate arrays. This is not only because initialization may not be able to take place via simulation or high variation in circuit path speed due to routing location effects.

Figure 5-6. Asynchronous RS Latches

5.3.2 Loop circuit

The following points must be noted when loop circuits, such as feedback loops, are used.
(1) As shown in Figure 5-7, if gates lie between feedback loops, such as divider circuits, the frequency characteristics will drop due to the delay time caused by these gates. The delay times of these loops must be determined beforehand and the frequency characteristics must be verified. See 5.6 Delay Time Margin for the margin verification method.

Figure 5-7. Loop Circuit

(2) A loop circuit cannot be formed in a scan path configuration. In this case, employ a countermeasure such as isolating the loop circuit by using gates.

5.3.3 Prohibited state of flip-flops

The state in which both the set and reset inputs of an RS latch or flip-flop are enabled at the same time is prohibited. This is because the retained data becomes unstable if both the set and reset inputs are disabled simultaneously. What value the retained data will take is influenced by delicate timing such as the timing of the set and reset signal input and delay of the internal signal of the flip-flop and cannot be guaranteed.

Consequently, be aware of the following when using flip-flops with set/reset inputs.
$<1>$ Do not enable set and reset inputs at the same time.
<2> When it is necessary to enable set and reset inputs simultaneously, disable one side first and then disable the other side. By doing this, the state that the flip-flop was in when it was disabled will be maintained.

Table 5-1. F617 (D-F/F with RB, SB)

D	C	$R B$	$S B$	Q	$Q B$
0	-	1	1	0	1
1	-	1	1	1	0
X	-	1	1	Hold	Hold
X	X	0	1	0	1
X	X	1	0	1	0
X	X	0	0	0	0

X: Undefined

5.4 Clocked Signal Design

Gate arrays should basically be designed as synchronous circuits.

5.4.1 Synchronous circuit design

There are two techniques used for designing synchronous circuits: the single-phase synchronous circuit design technique normally used for circuits designed using general-purpose LSIs, and the multi-phase synchronous circuit design technique often used in CPU design.

The features of single-phase and multi-phase synchronous circuit design are shown in Table 5-2.

Table 5-2. Features of Single-Phase and Multi-Phase Synchronous Circuit Design

	Advantages	Disadvantages
Single-phase synchronous circuit design	- Circuit is simple. - Generally suited to high-speed circuits.	• Signal skew on the clock line must be considered in configuring shift registers
Multi-phase synchronous circuit design	- Timing tests for shift registers are unnecessary.	• A multi-phase clock signal must be generated. - Number of gates increases.

(1) Single-phase synchronous circuit design

Single-phase synchronous circuits should be designed when sequential circuits will operate with a single clock signal. This relatively simple design method is necessary to adjust timing such as clock skew between sequential circuits.

Figure 5-8. Clock Skew

The s to a delay time differs from the s to b and s to c delay times due to wiring resistance.

Clock skew is a shift of the clock signal between sequential circuits.
This shift becomes greater if the wiring resistance becomes large and is also dependent on the wiring length from the point of divergence of the circuits. Follow the measures below to allow for clock skew when performing single-phase circuit design.
(a) Try to allocate similar clock lines in the same macro. (see Figure 5-9 (a)).
(b) When allocating a large number of clock lines, allocate the lines as shown in Figure 5-9 (b) so that errors due to clock skew do not occur.
(c) Accelerate the operation of the final-stage register by structuring the synchronous counters and shift registers (see Figure 5-10).
(d) Use clock tree synthesis (see 5.4.3 Clock tree synthesis).

Figure 5-9. Clock Skew Countermeasure 1
(a)

(b)

Figure 5-10. Clock Skew Countermeasure 2
(a) Circuits with potential for malfunction

(b) Circuit with a clock skew countermeasure

If buffers are inserted in the clock line due to the fan-out limitation, the countermeasures illustrated in Figure 5-10 (b) must be taken.

(2) Multi-phase synchronous circuit design

Operation of sequential circuits in multi-phase synchronous circuit design normally involves two or more clock signals with a constant relationship. This method avoids contention of clock operation between sequential circuits.

Figure 5-11. Double-Phase Synchronous Circuit

Figure $5-11$ is an example of a double-phase clock circuit. The two clock signals ($\Phi 1$ and $\Phi 2$) vary in timing to avoid hold time errors between two sequential circuits. Even if there is interaction between complex sequential circuits, testing for timing contention can be curtailed by alternately operating sequential circuits. In addition, since the number of gates is reduced in this circuit example, a latch can be used instead of a flip-flop. In multi-phase synchronous circuit design, configure the several clock signals from the basic clock signal. This will result in a lower clock frequency than that needed for a normal single-phase circuit (high speed is possible with a pipeline structure).

5.4.2 Clock skew

Clock skew is generated by wiring length variations in actual placement and routing. Hold time errors in sequential circuits can result from this clock skew. Normally, discrepancies due to these kinds of variations cannot be detected in the simulation that is performed before the placement and routing. The following guidelines are provided to minimize this problem.

(a) Clock line design in a macro

One clock line should be supplied in single-phase synchronous circuit design.
It is basically not necessary to test for clock skew in multi-phase synchronous circuit design. However, it is necessary to check the operating frequency.
(b) Clock line design between macros

There are clock skew problems especially between macros in single-phase synchronous design. Some examples of countermeasures are shown in Figure 5-12.

Figure 5-12. Countermeasures for Clock Lines Between Macros
(a) Insert delay gates

(b) Receive signal by inverse-phase clock

(c) Make circuit multi-phase

Figure 5-12 (b) uses the inverse phase of the clock to create a hold time margin. With this method, it is necessary to keep the clock frequency and duty cycle in mind.

Figure 5-12 (c) is a measure using a multi-phase clock. In this case, it is necessary to keep the clock frequency in mind.

5.4.3 Clock tree synthesis

Clock tree synthesis (CTS) is a technique that minimizes clock skew between flip-flops that are connected to the clock line. As shown in Figure 5-13 (a), the distance between the clock driver and each flip-flop is not constant. In addition, wiring resistance increases due to shrink processing. Because of this, the variations in wiring length are linked to clock skew. With CTS, a buffer is inserted in the clock line. This uniformly distributes the clock line, as shown in Figure 5-13 (b). Therefore, NEC Electronics recommends the use of the CTS instead of clock drivers.

Figure 5-13. Concept of CTS
(a) Conventional
(b) CTS

- First-level driver
- Second-level driver

Third-level driver
[Flip-flop

(1) Benefits of CTS

In CTS, a CTS block is substituted for the clock drivers (FCKA to E) that are usually used. Figure 5-14 shows how the clock line buffer is inserted. An inverter is used since the path delay time is shortened with actual CTS. This is how clock distribution is performed. As a result, the number of blocks that are inserted includes the number of CTS drivers. The block names and the number of stages of inserted block are shown in Table $5-3$. The selection of the blocks to be used is based on the number of clock line branches.

Cautions 1. NEC Electronics recommends the use of only one CTS per chip. Using more than one CTS is possible, however, it may cause the cell usage rate to decrease and the clock skew to increase as the number of times CTS is used increases. In addition, because more time is needed for clock tree synthesis and placement and routing as the number of CTS operations is increased, users are advised to check their design schedule.
2. When an oscillator (resonator) is also being used, see 7.3.3 Using oscillator (resonator) and CTS together.

Table 5-3. CTS Blocks (Reference)

Block Name	Number of Stages	Block Inserted	Number of Branches on Clock Line				
			32 to 128	128 to 1280	1280 to 2560	2560 to 5120	5120 or more
FC42	2	F144	$\begin{gathered} \text { © (33:1.70) } \\ \pm 0.20 \mathrm{~ns} \end{gathered}$	$\begin{aligned} & \text { (33:2.40) } \\ & \pm 0.30 \mathrm{~ns} \end{aligned}$	\times	\times	\times
FC82	2	F148	\times	$\begin{gathered} \text { © (33:1.70) } \\ \pm 0.20 \mathrm{~ns} \end{gathered}$	$\begin{gathered} O(33: 2.10) \\ \pm 0.35 \mathrm{~ns} \end{gathered}$	\times	\times
FC44	4	F144	\times	$\begin{gathered} \text { () (85:1.40) } \\ \pm 0.15 \mathrm{~ns} \end{gathered}$	$\begin{aligned} & \text { O (85:1.80) } \\ & \pm 0.35 \mathrm{~ns} \end{aligned}$	\times	\times
FC84	4	F148	\times	\times	$\begin{gathered} \text { (}(85: 2.60) \\ \pm 0.15 \mathrm{~ns} \end{gathered}$	$\begin{gathered} \text { (O) (85:3.00) } \\ \pm 0.25 \mathrm{~ns} \end{gathered}$	$\begin{gathered} \text { (O) }(165: 3.40) \\ \pm 0.40 \mathrm{~ns} \end{gathered}$

Remark Each symbol has the following meaning.
x : Cannot be used
O: Can be used
©: Preferred (recommended)
The values in parentheses represent the estimated number of inserted blocks (the first value), followed by the estimated delay time. The value on the next line is the estimated clock skew value, which varies slightly according to the conditions.
$\star \quad$ Cautions 1. FC42 or FC44 is recommended when using CTS in a chipset that is susceptible to EMI or noise.
2. If an OSOn oscillator block is directly connected to FC82, noise may occur, making stable oscillation impossible. Therefore, be sure to insert a gate between these blocks as shown in 7.3.3 Using oscillator (resonator) and CTS together.

Figure 5-14. Image of CTS Use (Example of FC44)

Total: 16 blocks Total: 64 blocks
(2) Clock tree synthesis guidelines

The following precautions apply when using CTS.
(a) The section from the output of the clock tree synthesis block (FCTS) to the block that requires optimized clock skew must be described by one net.
If a function block is inserted in the path, the clock skew up to the function block is optimized.

Figure 5-15. Clock Skew Optimization

In clock tree synthesis, the clock skew is optimized as far as the thick wires.
(b) The FCTS is described in the TOP level hierarchy and is not entered in the macro. This makes skew optimization difficult.

Figure 5-16. Example of CTS Block Description

(c) Routing detours increase with large macros and high use rates, and there are cases where clock skew cannot be sufficiently optimized.

5.5 Notes on Configuring High-Speed Circuits

Generally, when comparing the characteristics of P -ch and N -ch transistors, an N -ch transistor can pass a higher current than a P-ch transistor. Therefore, a NOR gate consisting of P-ch transistors connected in series has a reduced load drive capability at the rising of the output. For example, a NOR block is slower than a NAND block, and has poor fan-out characteristics.

Guidelines to be followed when structuring a circuit that will run at high speed are shown below.
(1) Structure the circuit by using logic conversion techniques and standard NAND blocks.

- The circuit's speed will improve, as will the circuit's stability (see Figure 5-17 (a)).
(2) Structure the circuit so that the fan-out is as small as possible to lighten the load.
- In general, observe the $1 / 3$ to $1 / 2$ fan-out limit (see Figure 5-17 (b)).
(3) Convert from low-power blocks to standard blocks.

Figure 5-17. Configuring High-Speed Operational (Stable) Circuits

5.6 Delay Time Margin

Logic circuits consist of combination circuits whose output is determined simply by the state at their inputs and sequential circuits whose output is determined by the state at their inputs and their previous state. Specifically, sequential circuits consist of gate circuits with feedback, flip-flops, and latches.

Bearing in mind testability considerations and ease of design estimation for delay time, it is clear that individual combination and sequential circuits cannot be too large. Also, a majority of the sequential circuits are operated in synchronization with the system clock, which has an adequate margin with respect to the delay times of the combination circuits.

In the portion where adequate margin cannot be secured by the clock, timing of the entry of the sequential circuit, i.e., each input of flip-flops and latches, must be secured.

5.6.1 Timing definitions

(1) Setup time (tsu)

In latches or flip-flops, the data setup time needed to read data at the active edge of the clock.

(2) Hold time (th)

In latches or flip-flops, the data hold time needed to read data at the active edge of the clock.
(3) Release time (trel)

In latches and flip-flops, the time needed from release of the reset or set until the active edge of the next clock becomes valid.
(4) Removal time (trem)

In latches and flip-flops, the time needed to make the active edge of the clock invalid when the reset or set is cancelled.

(5) Minimum pulse width (tw)

In latches or flip-flops, the minimum time of the clock, reset, or set pulse width needed in order to read data correctly.

Figure 5-18. Setup Time

Figure 5-19. Hold Time

Figure 5-20. Release Time

Figure 5-21. Removal Time

Figure 5-22. Minimum Pulse Width

C

5.6.2 Delay time margin calculation (asynchronous circuits)

The setup time and the hold time for the circuit in Figure 5-23 are described as an example of calculating the delay time margin. Here, the variation and wiring length are set conditionally as to decrease the margin. If the specifications that are determined by each block (tsu and th) are satisfied, then decisions about normal operation can be ascertained.

Figure 5-23. Example of Delay Time Margin Calculation Circuit

Figure 5-24. Timing Estimate
(a) Setup time (tsu)
(b) Hold time (tn)

Calculation equations:

> tsu $<$ tPDB' $^{\prime}-$ tPDA $^{\prime}$
> $=\operatorname{tPDB}($ MiN. $)-\operatorname{tPDA}[$ MIN.(MAX.)]
> $=\operatorname{tPDB}($ MiN. $)-\operatorname{tPDA(MIN.)~} \times \frac{1+\alpha}{1-\alpha}$
th $<$ tPDA" - tPDB ${ }^{\prime \prime}$
$=$ tPDA(MIN.) $-\operatorname{tPDB}[$ MIN.(MAX.)]
$=\operatorname{tPDA}($ MIN. $)-\operatorname{tPDB}(M I N.) \times \frac{1+\alpha}{1-\alpha}$
α : Distribution coefficient (0.1)

5.6.3 Delay time margin calculation (high-speed circuits)

In circuits operating at high frequencies, the operating margin for an internal functional block's delay time is small since the single-cycle time is short.

Here, the delay time margin calculation for both in-phase and inverse-phase circuits is described.

(1) In-phase clock

Consider the shift register operation containing delay between flip-flops F1 and F2 in Figure 5-25.
As shown in Figure 5-26, the points at which this circuit is inspected are where the output data (Q in $F 1$) passes through delay A and is input to F2 (sampling timing $<1>$) and at sampling timing $<2>$, where a check is made to see if the data is read normally.
Therefore, the value resulting from adding the maximum delay at point a to the setup time of F2 must be obtained within one time period (T).

Figure 5-25. Example of In-Phase Clock Circuit

Figure 5-26. In-Phase Clock Timing

Note Do not cross into the next sampling timing with respect to the F2 setup time.

Calculation equation:

$\mathrm{T}-(\operatorname{tPD}(\mathrm{F} 1)(\mathrm{MAX})+.\operatorname{tPDA}(\mathrm{MAX}))>.\operatorname{tsU}($ (F2)

The following countermeasures are necessary if this relationship is not satisfied:

- Reduce the amount of delay of delay A
- Lower the operating frequency (lengthen period T)
(2) Inverse-phase clock

Figure 5-27 is an inverse modification of the F2 clock's active edge shown in Figure 5-25. Since both the rise and fall edges are used, the operating margin varies with the CLK duty. The circuit normally operates under the following conditions.

Figure 5-27. Example of Inverse-Phase Clock Circuit

Figure 5-28. Inverse-Phase Clock Timing

Note Do not cross into the next sampling timing with respect to the F2 setup time.

Calculation equation:

```
tPOS - (tPD(F1)(MAX) + tPDA(MAX)) > tSU(F2)
```

The following countermeasures are necessary if this relationship is not satisfied:

- Reduce the amount of delay of delay A
- Lower the operating frequency (lengthen period T)
- Increase the CLK duty

5.6.4 Minimum pulse width

With circuits operating at high speed, there are cases when the minimum pulse width for a flip-flop input clock is not satisfied due to the delay difference between the rise and fall of the signal and the relative variation of an identical path.

For example, in Figure 5-29, the signal input by CLK passes through delay B and is input to the clock of the flipflop. The timing is shown in Figure 5-30. In regard to delay B, when the fall time delay (tpdB(LL)) is greater than the rise time delay (tPdB(HH)), $\mathrm{t}_{\mathrm{NEG}}$ becomes greater than $\mathrm{t}_{\mathrm{NEG}(\mathrm{MIN} .)}$, and the pulse becomes narrow. $\mathrm{t}_{\mathrm{NEG}}(\mathrm{MIN}$.$) is estimated$ by the conditional setting of $\operatorname{tPDB(LL)}$ to the maximum and $\operatorname{tPDB(HH)}$ to the minimum relative variation direction.

Figure 5-29. Minimum Pulse Width Estimate

Figure 5-30. Pulse Narrowing

Calculation equations:

$$
\begin{aligned}
& \rightarrow \mathrm{tNEG}^{(M I N .)}=\mathrm{tNEG}+\left(\operatorname{tPDB}(H H)(\text { MAX. })-\operatorname{tPDB}(L L)(\text { MAX. }) \times \frac{1-\beta}{1+\beta}\right)>\mathrm{tw}
\end{aligned}
$$

β : Distribution coefficient (0.1)

The ratio $\operatorname{tPDB}(\mathrm{HH}) / \operatorname{tPDB}(\mathrm{LL})$ is controlled in order to regulate the minimum pulse width of the signal that is input to the flip-flop clock. This increases the duty cycle. In the example above, if the functional block in delay B is changed to
 necessary to be aware that the high-level pulse width must satisfy the minimum pulse width standard.

5.6.5 Metastable state (preliminary)

If the setup and hold time standards are not satisfied and the clock and data or clock and set/reset are changed simultaneously, the output may be oscillated at the flip-flop and latch and become an intermediate level that is neither high nor low. This unstable state is called a metastable state. The metastable state ends after a certain time, and the output settles into a high or low level. However, an unstable state results since the level that is defined has no relationship to the data input level.

In the cases where the setup, hold, release, and removal times cannot be satisfied, take the countermeasures shown below to prevent this unstable state from spreading over the entire circuit.

Setup time (tsu) \qquad Time that the data signal must secure before the clock changes
Hold time (th) \qquad Time that the data signal must hold after the clock changes

Caution The specified tsu and th must be satisfied (see the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E)).

Release time (trel) Time after the set/reset signal changes until the clock becomes valid
Removal time (trem) Time needed in order to make the clock invalid

Caution The set or reset signals must not be cancelled in the vicinity of the active edge of the clock.

(1) Metastable state generation and recovery time

In the CMOS-N5 Series, the time of the metastable state is specified as shown below. After this time, the state is either H or L, but it is not clear which (shown as "undefined" in the above figure).

```
Metastable time = tpd (MAX.) }\times
```

tpD (MAX.) Maximum value of the delay time from the active edge of the clock until the output changes (when the ratings of the setup/hold time could not be satisfied); or, release/removal time (when the ratings of the release/removal time could not be satisfied).
There is no problem even if tpdo(MAX.) is used in $F \times X X$-type sequential circuits. For the respective values, see the CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E).

(2) Avoiding a metastable state

When the stipulated times cannot be satisfied (asynchronous input signals), configure the circuit so that the occurrence of metastability will not affect the later stage. Examples of the abnormality and how to avoid it are shown below.

Example of abnormality

When the output from b in the figure below is input to the counter, an excess number of counts may occur.

Expected value b $\quad \square$

Example of avoiding abnormality

Output c is stable due to the insertion of the flip-flop. However, although the initial clock at can have two values as a function of the instability of b, there is no effect on the counter in the following example.

Output c

(When the unstable state of b is H)
Output c

(When the unstable state of b is L)

Remark Clock width $>\operatorname{tPD}($ MAX. $) \times 6+($ tsu or th $)$

5.6.6 Critical paths

A critical path relates to the system timing contained in the gate array. It is the path that establishes the delay time for the gate array (see Figure 5-31). In this example, a detailed investigation of the paths A, B, and C (the critical paths) is necessary.

- Path A: Is the input timing of the device in the next stage satisfied for gate array output sampling by CLK?
- Path B, C : Is the sampling timing satisfied in the gate array by the controlling device's output timing?

Figure 5-31. System with Critical Paths

The following three types of critical paths are available:
<1> Input to output
<2> Input to input
<3> Output to output

The inspection and specification methods for these critical paths are explained in the following sections.
(1) Calculating and designing a critical path

As described in 4.4.3 Estimating wiring capacitance, placement and routing are executed by determining the placement range for each macro hierarchy (first hierarchy only). Consequently, the intramacro and intermacro wiring lengths differ significantly. The following points must be noted when the propagation delay time of the critical path is estimated using the virtual wiring capacitance listed in Table 4-5.
$<1>$ The critical path can be terminated in one macro hierarchy (first hierarchy) (excluding the I/O buffer).
<2> The load connected to the path can be reduced by making the critical path as simple as possible (limiting the fan-out value to $1 / 3$).
$<3>$ Except as given above, the input and output pins should be placed as close together as possible in regard to critical paths from the input to output pins.
$<4>$ Circuits other than critical paths should not be included in macro hierarchy.

(2) Critical path between input and output

Path A in the circuit example of Figure $5-31$ is not influenced by other inputs. The maximum tpd value must be designed to be smaller than the value required by the system.
In addition, keep in mind the large dependency of the output buffer's delay time on the external load capacitance CL.

Calculation equation:

tpd(MAX.) < System specification value
(3) Critical path between two inputs

The circuit configuration in Figure 5-32 will be calculated as an example to study the input sampling timing. Calculation will be made assuming that the timing of a signal input from outside is as shown in Figure 5-33, since the mutual timing specification between the input pins must be well defined in this timing verification.

Figure 5-32. Example of Input-Input Critical Path

Figure 5-33. Verification of Setup Time

The following points must be taken into consideration with respect to the conditions used:

- Absolute variation is in the direction of the smallest margin
- Relative variation is in the direction of the largest tPDD and the smallest tpDC The method for making these decisions is shown below.

Calculation equations:

DATA is assumed to be a time differential of 4.7 ns (MIN) from CLK, as shown in Figure 5-33.

$$
\begin{aligned}
& \operatorname{tPDC}(\text { MIN. })-\operatorname{tPDD}[\text { Min. } \max .)]+4.7>\operatorname{tsu} \\
\rightarrow & \operatorname{tPDC}(\text { MIN. })-\operatorname{tPDD}(\text { MiN. }) \times \frac{1+\alpha}{1-\alpha}+4.7>\operatorname{tsU}
\end{aligned}
$$

α : Distribution coefficient (0.1)

5.6.7 Ensuring operating margin

When a circuit lacks an operating margin as the result of a delay margin check and a critical path check, there are several things that can be done, depending on the circuit's configuration.

Generally, the following methods are used.

<1> Reassess input and output specifications

- Decrease the input fmax. and lower the input fmax. duty variation
- Ease the input and output timing and decrease the output's load capacitance

<2> Reassess pin placement

- Shorten the wiring length to decrease the delay between input and output (adjacent placement of pins)
<3> Modify the circuit
- Decrease the delay time by simplifying the circuit
- Decrease the delay time by decreasing the load on the circuit
- Obtain a margin by inserting a delay gate

Delay calculations (or recalculations) are necessary when modifying a circuit, so it is particularly important to estimate the inserted gate output wiring length as 0 mm in regard to delay gate insertion.

5.7 Internal Bus Configuration

5.7.1 Configuring internal bus

Typical data selection techniques include the data selector format and the bus format. The circuit configuration of a data selector (multiplexer) can become very complex. On the other hand, the bus format enables a comparatively simple circuit configuration that it is easier to understand and the number of cells used does not increase. However, the propagation delay time may increase. Therefore it is important to select the optimum format according to the circuit structure.

Figure 5-34. Bus Configuration

5.7.2 Preventing internal bus floating

As a basic rule when using an internal bus, only one block configured on the same bus line should be in the output enabled state. This is necessary to avoid the input of the next stage block being in a floating state. Examples of a good internal bus circuit structure are shown in Figure 5-35.

Figure 5-35. Examples of Internal Bus Floating Prevention Circuit
(a) Example 1

(b) Example 2

5.7.3 Precautions when using internal bus

Although the internal bus can operate with multiple blocks connected on the same bus line, the signal rise and fall times may increase due to an increase in wiring length and an increase in the fan-in loading of the previous block. Since problems in operating stability and reliability may result, the following constraints must be observed. For further information, see 5.8 Preventing Contention with External Bus.
(1) Observe the bus constraints indicated by the following formula:
$\mathrm{F} / \mathrm{O}+\mathrm{N} \leq 50$
$(1.4 \times \mathrm{F} / \mathrm{O}+1.1 \times \mathrm{N}+1.9) \times \mathrm{f}<410$

F/O ... Sum of the fan-in loading (F/I) of the gates connected to the bus
N Sum of the 3-state output buffers (F531, F532) connected to the bus
f......... Operating frequency (MHz) of the bus

Contact NEC Electronics if it is required that the design exceeds the above conditions.
(2) Basically, the following states are prohibited on the bus line.
(a) More than two outputs are enabled on the same bus line.
(b) All outputs are disabled on the same bus line.

Consider enable-signal skew in order to converge the above states within no more than 20 ns .

5.8 Preventing Contention with External Bus

In addition to the explanation in 5.7.3 Precautions when using internal bus, the two items below should be noted when connecting gate array and other LSIs in a system using a bus configuration.
(1) Bus contention
(2) Bus floating

Take measures via timing design and pull-up/pull-down resistors in order to avoid these problems.
In addition, in order to avoid external bus floating, I/O blocks with pull-up and pull-down resistors can also be used. For further information, see CHAPTER 7 MULTIFUNCTION BLOCKS.

Figure 5-36. External Bus Floating Prevention Countermeasure

5.9 Testability

There is more than just logic design when designing a gate array. Testing and test circuits are also necessary. Consider the points shown below when designing the circuit and generating a test pattern. For more information, see

CHAPTER 6 TEST PATTERN GENERATION.

- Flip-flop (F/F) initial setting
- Division of counters
- Addition of test pins
- Division (modularization) of internal circuits by test pins

5.9.1 Flip-flop initial setting

When the device is powered up, it is not known whether the output state of a block, such as a flip-flop or counter, is high level or low level. Consequently, the initial state must be set using the first few patterns during simulation.

In the design stage, the circuit should be configured so that an initial setting pattern is not too long, and blocks with reset inputs should be used as much as possible so that the initial state of the internal circuit can be reset.

Figure 5-37. Flip-Flop Initial Setting

5.9.2 Counter division

With multi-bit counters, the effective test method is to divide the counters to reduce the number of test patterns.
For example, the number of pulses necessary until the final stage of a 16-bit counter operates is 2 to the 16 th pulses. By dividing the 16 -bit counter into two 8 -bit counters as shown in Figure 5-38, however, the number of pulses can be cut by $1 / 100$ to $1 / 200$.

Figure 5-38. Counter Division

5.9.3 Adding test pins and dividing circuits

Similar to the case in 5.9.2 Counter division, when testing multibit counters and large-scale macros, the LSI test can often be simplified and the number of test patterns reduced by setting up "test pins", which enable the operation mode to be set externally.
(1) An effective method to test LSIs when the circuit is internally divided into several operation modes is to set up pins (test pins) to enable the setting of a specific test mode.
(2) Large-scale circuits are often configured by several partitioned macros (modules), when testing such a circuit, an effective method is to set up specific test pins per partitioned module to enable testing of the circuit in a divided state.

5.10 Racing and Spike Noise

5.10.1 Racing (contention)

The state where the timing changes when there are more than two input signals in a logic block is called racing (contention).

If the test pattern shown in Figure 5-39 (b) is added to a circuit such as that in Figure 5-39 (a), a shift in flip-flop data and clock timing occurs due to the difference between the two delays in buffer 1 and 2 and the routing delay difference. The result of this is that the expected operation does not occur. In the case of Figure 5-39 (a), data is first set in the flip-flop, making it necessary to consider a change in the clock. The test pattern for this is shown in Figure 5-39 (c).

Figure 5-39. Racing
(a) Circuit with potential for racing

(b) Test patterns with potential for racing

(c) Test patterns that do not cause racing

5.10.2 Spike noise

Spike noise is noise in a circuit that employs two or more gate inputs and is caused by a small input timing shift when the input signal timing changes. The time interval of this spike noise changes as a function of the size of the shift in timing. If the spike noise is input to the next-stage flip-flop clock or the set/reset, the affected signal path related to the flip-flop's output signal can generate errors in operation.

Consequently, when gates with two or more inputs are used, it must be checked whether an influence is exerted on the next-stage gates and the external output signals by spikes generated by changes occurring when the multiple inputs operate simultaneously. It must also be confirmed whether or not operating errors are occurring. If the spike noise cannot be ignored in the following stage, the test pattern and circuit need to be modified so as to not influence the following stage.

Following is an example of the generation of spike noise and measures that can be taken against it.

Figure 5-40. Example of Data Selector Circuit

The AND-NOR data selector circuit shown in Figure 5-40 will generate the test pattern shown in Figure 5-41.

Figure 5-41. Example of Test Patterns (Before Improvement)

In this case, when both the DA and DB input data signals are in a high-level state, spike noise is generated at the output signal OUT since the SEL (select signal) changes from H to L . The pattern in Figure 5-41 generates spikes at pattern locations 2, 8, 11, and 15.

As is clear from the circuit diagram, when DA and DB are in the high-level state, the state of b and c are determined by the state of SEL. In addition, when SEL changes from H to L, b changes from L to H and c changes from H to L in the same pattern. Moreover, a changes when it goes through inverter A and the delay through A is greater than that of SEL. Because of this, b is delayed more than c for inverter A. Consequently, the state of b and c are simultaneously L and L at $2,8,11$, and 15 of the test pattern, and L-to-H-to-L spike noise is generated for OUT.

Implement the following two measures if this spike noise is input to the flip-flop clock or the set/reset.

[^2]In the case shown in Figure 5-41, when SEL changes from H to L , make at least one of DA or DB change to L . There is no spike noise at the output OUT if the timing is designed as shown in Figure 5-42.

Figure 5-42. Example of Test Patterns (After Improvement)

CHAPTER 6 TEST PATTERN GENERATION

When designing with gate arrays, the circuit's expected function and performance are verified through simulation on a computer. To execute the simulation, the user is requested to prepare a circuit diagram and test patterns.

These test patterns are also used for product inspection before shipment. During shipment inspection, the functions of the LSI are verified (test function) and the DC characteristics (such as power supply leakage current, input leakage current, and output current) are tested. Unless adequate consideration is given to the shipment inspection, therefore, the product is not thoroughly tested when shipped. Users are therefore requested to generate test patterns with which fault detection and DC testing can be performed.

During simulation, the conditions under which the LSI is actually used by the user can be realized relatively easily. The LSI tester, which tests the actual LSI, however, cannot completely reproduce the conditions under which the user actually uses the LSI, in many cases. The test patterns should therefore be generated in accordance with the capability of the LSI tester and by observing specified limits.

This chapter describes the points to be noted when generating test patterns.

6.1 Test Pattern Types

The types of test patterns available are shown in Table 6-1.
One DC test pattern is essential, but other test patterns may also be necessary depending on circuit or user requirements. When the LSI tester is used to perform DC measurement, the measurement is carried out using up to the first 32,000 patterns of the DC test pattern.

Table 6-1. Test Pattern Types

Pattern Name	Purpose	Pattern Generator
DC test pattern	DC measurement, logic verification	User
Function test pattern	Logic verification	User
High-speed function test pattern	Logic verification (real time)	User
Megamacro initialization pattern	Initialization	NEC Electronics (inserted by user)
Megamacro single-unit test setting pattern	Setting megamacro peripheral values	User
Megamacro test pattern	Logic verification (megamacro single unit)	NEC Electronics
Scan test pattern	Fault detection	User or NEC Electronics
RAM test pattern	Logic verification (RAM single unit)	NEC Electronics
Digital PLL initialization pattern	Initialization	User
Boundary scan test pattern	Logic verification (boundary scan circuit)	User or NEC Electronics

Although the pattern length per pattern is not restricted (except for the high-speed function test), the total pattern length is. For details, refer to 6.2.2 Limitations on test pattern length.

6.2 Notes from Viewpoint of Product Test (LSI Tester)

6.2.1 I/O pin naming conventions

(1) Maximum number of characters for I/O pins

64 characters MAX.

(2) Characters allowed

Some characters must not be used when specifying a pin name. The characters that can be used are listed in the table below.

Table 6-2. Restrictions on Pin Names

Usable characters	Alphabetic uppercase letters Numeric characters "_" (underscore)
Unusable characters	" /" (slash) and all other special characters other than the underscore Alphabetic lowercase letters

6.2.2 Limitations on test pattern length

The length of a test pattern is limited by the size of the LSI tester's memory.
The minimum and maximum lengths of test patterns (for DC test and for the function test) are listed in Table 6-3.

Table 6-3. Limitations on Number of Test Patterns

Number of Patterns	Minimum Number of Test Patterns (Applicable to DC Test Patterns)	Maximum Number of Test Patterns ${ }^{\text {Note } 2}$
144 pins or less: with SCAN	150 patterns	128 K patterns
144 pins or less: without SCAN		256 K patterns
145 pins or more		512 K patterns

Notes 1. The number of package pins includes the number of power supply pins (GND, VDD, etc.).
2. The maximum length of test pattern does not need to be considered for the RAM test pattern, scan test pattern created by NEC Electronics, and high-speed function test pattern.
Examine each length of test pattern for the user-created test pattern and megamacro boundary scan, taking the limited pattern length above into consideration.

6.2.3 Number of test patterns

$\star \quad$ There can be more than one test pattern. The maximum number of patterns is 20 , including all interface test patterns such as those for DC test and function test. In this case, the RAM test pattern, scan test pattern created by NEC Electronics, and high-speed function test pattern do not need to be considered.

However, the number of test patterns should be minimized as far as possible in order to increase efficiency. Even if the test pattern is divided for the sake of convenience of design, in principle, submit one test pattern to NEC Electronics (the test patterns can be easily combined by using the wave editor of the pattern utility or OPENCAD).

To divide the test pattern, initialize each pattern (see 6.3.1 Initializing circuit). If this is not possible, be sure to inform NEC Electronics of the sequence of the test patterns (in writing).

The test pattern must be divided in the following cases.

- If the time conditions (input delay and pulse width) and output judge time (strobe time) of the input signals differ For details, see 6.3 Notes on Creating Test Pattern for Function Test.

6.3 Notes on Creating Test Pattern for Function Test

6.3.1 Initializing circuit

Whether the output state of blocks, such as flip-flops and counters, is at the high level or low level immediately after power application is unknown (see 5.9.1 Flip-flop initial setting). Consequently, the initial status of sequential circuits such as flip-flops and counters is " x " (undefined) during simulation. To verify operation of the circuit, it is necessary to change the internal function block state from an indeterminate state to a determinate state (circuit initialization).

When designing a circuit, prepare a pattern that can initialize the circuit at the beginning of the test pattern, and at the same time, consider use of a reset pin, so that the circuit can be easily initialized.

When preparing divided test patterns, in principle, initialization is necessary for each pattern (see Figure 6-4 Test

Pattern Example).

6.3.2 Test cycle (test rate)

The test rate is referred to as the cycle of one test pattern.
Currently, the test cycle limitation at NEC Electronics for a general function test is as follows:

Test cycle: 200 ns

If a higher-speed test cycle than above is desired, perform the high-speed function test. For the high-speed function test pattern, refer to 6.6 High-Speed Function Test (Real-Time Test).

6.3.3 Output determination time (strobe time)

The output determination time (strobe time) refers to the time during which the output value of the product is referenced with the expected value on the test pattern. In the current normal function test pattern, this time is always the final time (199.99 ns) of the period, and anything outside of this becomes a high-speed function.

For details of the high-speed function test pattern, see 6.6 High-Speed Function Test (Real-Time Test).

6.3.4 Specification of timing phase

For the specification of timing phases currently supported, refer to Table 6-4 (including the basic timing).
The skew among the pins of the LSI tester (specified as $\pm 5 \mathrm{~ns}$) must be considered, and the time differential of each phase must be set to 10 ns or greater.

The basic timing phase indicates the NRZ signal when ($\Delta t \mathrm{t}=0 \mathrm{~ns}$. NRZ signals with an equal delay time ($\Delta \mathrm{td}$) are considered as in-phase and counted as one phase no matter how many input pins there are with the same timing.

Likewise, RZ signals with an equal delay time ($\Delta \mathrm{t} \mathrm{t}$) and pulse width ($\Delta \mathrm{tw}$) are also considered as in phase.
Positive clocks and negative clocks with an equal $\Delta t \mathrm{t}$ and $\Delta \mathrm{tw}$ are also counted as one phase. However, NRZ signals and $R Z$ signals with an equal Δt are in-phase.

Table 6-4. Timing Phase Number

PKG	Timing Phase NumberNote
All packages	6

Note Including basic timing phases.

Table 6-5. Timing Constraints

Timing Limit Signal Type	Input Delay (Δ to)		Input Pulse Width (Δ tw)	
	MIN.	MAX.	MIN.	MAX.
Basic timing	0 ns		-	
NRZ signal	10 ns	T-10 ns	-	
RZ signal (clock mode)	10 ns	$\mathrm{T}-\Delta \mathrm{tw}-10 \mathrm{~ns}$	145 pins or more: 10 ns 144 pins or less: 15 ns	$T-\Delta t \mathrm{t}-15 \mathrm{~ns}$

Remarks 1. NRZ (No Return to Zero) signal: Indicates there is only one change within one test pattern (1 test rate).
2. RZ (Return to Zero) signal: A signal with a change of $0 \rightarrow 1 \rightarrow 0$ or $1 \rightarrow 0 \rightarrow 1$ within one test pattern.

Figure 6-1. Timing Phase

Cautions 1. At least $\mathbf{1 0}$ ns must remain between changes of each signal.

2. $R Z$ signal input to bidirectional pins is prohibited.

Remark T: Test cycle (test rate)

The clock mode (RZ) signal of the input has two polarities, which determine how it is used.

Table 6-6. Clock Mode

Input Pattern	Definition	Operation	
		Positive Clock (P)	Negative Clock (N)
$1(\mathrm{H})$	Clock generation	$0 \rightarrow 1 \rightarrow 0$ (positive clock generation)	$1 \rightarrow 0 \rightarrow 1$ (negative clock generation)
$0(\mathrm{~L})$	Clock stop	0 hold	1 hold

6.3.5 Skew

When two or more input signals are changed at the same time during simulation, no skew occurs between input signals. With an LSI tester that is used to check the quality of products, however, the input signals do not change at exactly the same time because of a skew of several ns that exists between input pins, even if it is specified that the signals change at the same time. Consequently, even if no problem is found during simulation, the product may not pass a quality test because of the skew between pins.

Therefore, take the following measures so that the product will operate normally even if there is an input skew when creating a test pattern.
(1) Do not change a flip-flop's data input and clock at the same time \rightarrow Instead, alternate by one pattern.
(2) Use a clock signal (RZ signal) and an input delay signal (NRZ signal).
\rightarrow Stagger the input.
If it is assumed that the input skew is 10 ns and the setup time between data and clocks is 5 ns , then a 15 ns delay time is needed, as shown below.

6.3.6 Notes on switching I/O mode of bidirectional pin

(1) Although the switching of the bidirectional pins' I/O mode is generally carried out at the basic timing, for the DC test pattern and function test pattern, it is possible to shift the I/O switch timing of a single set. This is known as the I/O modulation function (refer to 6.3.7 I/O modulation function for details). Note, however, that the bidirectional pin I/O mode cannot be switched using the RZ signal (because the mode will change twice within 1 rate: input \rightarrow output \rightarrow input. See Figure 6-2.)

Figure 6-2. Example of Incorrect Bidirectional Pin Switch Timing

(2) In cases when an input delay has been added to the control pin in the bidirectional pin I/O mode, or when the I/O mode switch timing is different to the basic timing because there is a delay until the internal circuit is enabled, ensure that the input and output values match when switching the I/O mode. This processing prevents a current from flowing when the device's output signal conflicts with the LSI tester's driver (input), and is used to avoid power supply modulation or other such causes of malfunction. If it is not possible to match the input and output values, ensure that the conflict does not exceed 20 ns (see 6.3.8 I/O conflict). Note that it is prohibited to input the RZ signal (clock waveform) to a bidirectional pin.

Figure 6-3. Contention During Input/Output Switching

Remark T: Pattern period
(3) In cases when due to the circuit specifications of PCl bus circuits, etc. the I / O mode switch timing differs from the basic timing, and the bidirectional mode is switched after the pre-switching value is fetched inside the circuit, use the I/O modulation function (refer to 6.3.7 I/O modulation function for details).

6.3.7 I/O modulation function

Although in the case of the DC test pattern and function test pattern it is possible to shift the I/O switch timing of a single set, the following restrictions apply.

Remark T: Pattern period
$\Delta t d$: Input delay of I / O switch signal

When shifting the I/O switch timing from the basic timing, the I/O switch time on the tester side is set as the I/O modulation.

The following expression must be satisfied, assuming Δt trmax is the slowest time of all the pins and patterns among the bidirectional pin (simulation result) I/O switch times, and Δt is the I/O modulation time.

$$
\Delta \mathrm{t} \text { s } \geq \Delta \operatorname{trmax}+5 \mathrm{~ns}
$$

The reason for this is that in cases when the bidirectional mode is switched after the pre-switching value is fetched inside circuits such as a PCI bus circuit, because it is necessary to hold the external (LSI tester) value until the pin's I/O mode has been switched, the circuit must be driven longer (I/O mode switching delayed longer) than in the simulation result: 5 ns of the skew between the LSI tester pins.

$$
\begin{array}{lll}
\text { Remark } & \mathrm{T}: & \text { Pattern period } \\
& \Delta \mathrm{td}: & \text { Input delay of } \mathrm{I} / \mathrm{O} \text { switch signal } \\
& \Delta \mathrm{tr} 1 \text { to } \Delta \mathrm{tr}: & \text { Bidirectional pins' } / / \mathrm{O} \text { switch times }
\end{array}
$$

($\Delta t r 3$ in the above figure corresponds to Δ trmax in the aforementioned equation.)
$\Delta t s: \quad \mathrm{I} / \mathrm{O}$ modulation (I/O switching on the tester side) time

In addition to satisfying the above conditions, the following restrictions must be observed.

Item	I/O Modulation $(\Delta \mathrm{ts})$		Interval Between I/O Modulation and Other Input Delay ($\left.\Delta \mathrm{t}_{\mathrm{p}}\right)$
	MIN.	MAX.	MIN.
Restriction	10 ns	$\mathrm{~T}-10 \mathrm{~ns}$	10 ns

When setting both the input delay ($\Delta \mathrm{t}_{\mathrm{d}}$) and I/O modulation ($\Delta \mathrm{t}$ s) for the same pin, ensure that either of the following is satisfied: $\Delta \mathrm{t}$ s $=\Delta \mathrm{t}$ d, or $\Delta \mathrm{t} \mathrm{s}+10 \mathrm{~ns} \leq \Delta \mathrm{t}$.

Note that the I/O conflict time must be kept within 20 ns , even when using the I/O modulation function.

6.3.8 I/O conflict

If it is not possible to match the bidirectional pins' input and output values, the I/O conflict must not exceed 20 ns. The reference for judging I/O conflict is shown below.

Simulation Result	Expected Value	
	Input	Mode Undefined
Output 1	$0, \mathrm{X}$	$0, \mathrm{X}$
Output 0	$1, \mathrm{X}$	$1, \mathrm{X}$
Output X	$0,1, \mathrm{X}$	$0,1, \mathrm{X}, \mathrm{Z}$

6.3.9 Testing multifunction I/O circuits

(1) Oscillators

Oscillators cannot be actually oscillated and tested with a simulator and LSI tester. Input a dummy signal to the input pin of the oscillator.
Use the inverted signal of the input signal as the expected value of the output of the oscillator.
The oscillator input signal is equivalent to the clock signal. Because a stable test cannot be performed due to conflict if this input signal and external data or set/reset input signals are changed at the same timing, be sure to stagger the timing.
Because the test pattern is not modeled in an oscillating state, the external timing of data or reset signals related to the clock in an oscillating state (oscillator input signals) is not tested.

(2) Open-drain output

The expected output value in the case of output disable must be high impedance (Z).

6.4 Notes on Creating DC Test Patterns

Restrictions for DC test patterns are basically same as those for function test patterns. The test pattern is not only used to test the functions but also used to test DC characteristics during shipment inspection. Therefore, the following points must be noted in creating a test pattern.
<1> If possible, prepare a dedicated test pattern set for the DC test pattern.
<2> The length of the DC test pattern should be more than 150 patterns. If the length of the pattern exceeds 32,000 , perform the DC test between 1st and 32000th pattern.
<3> If possible, make input pins change at least two times (except for oscillation stop control pin).
<4> Output pins must output a high level and a low level at least once each.
$<5>$ The output pin of a three-state output buffer must output a high-impedance state (off state).
<6> When a bidirectional buffer is used, make sure that the input state and output state are switched at least once.
<7> The test cycle must be sufficiently longer than the delay time (operating time) of the circuit. The basic cycle is 200 ns . Be sure to set the output determination time (strobe time) towards the end of the cycle (this is so the output is determined after the circuit has entered the stable state).
<8> If an RZ (Return to Zero) signal is input to an input pin, make sure that the RZ signal is not output as is. The output value of the output pin that outputs the RZ signal is always either one of two values at output determination time, and the other value cannot be tested.
$<9>$ Bus fighting and bus floating for the internal bus is prohibited.
$<10>$ Initialize the circuit until 50th pattern.
$<11>$ The IDDq test is performed in the DC measurement pattern. The measurement pattern is selected automatically. If possible, operate the internal circuit to improve coverage.
<12> Be sure to set to oscillation mode when an oscillator block is mounted.
<13> In the test pattern in oscillation mode, input the same pattern as normal clock pattern for the input pin (XT1) and expected value of output pin (XT2) should be its inverse.

The RZ signal has changes of " $0 \rightarrow 1 \rightarrow 0$ " and " $1 \rightarrow 0 \rightarrow 1$ " in one test pattern (1 test rate). By contrast, the NRZ (No Return to Zero) signal has only one change in one test pattern (1 test rate).

6.5 Test Pattern for On-Chip RAM

NEC Electronics supplies a test pattern for RAM, and the user does not have to consider RAM tests. However, the following limitations are applied if NEC Electronics supplies the test pattern for RAM. (For details, see 7.4 Memory).
(1) Additional RAM pins (TIN, TEB, and TOUT) are needed in order to test the RAM.
(2) If there are multiple RAMs or connections between RAM and logic circuits, the connection to each RAM must be tested by the user test patterns.
(3) Be sure to set the TEB pin to user mode (high) for each of the user test patterns.

Figure 6-4. Test Pattern Example

6.6 High-Speed Function Test (Real-Time Test)

Checking the designed circuit through simulation at the actual operating frequency is a very effective technique for checking the actual operation of the LSI. In this way, problems concerning the timing of the circuit during actual operation that may have been overlooked by the designer can be found.

During the shipment inspection of the product, the actual operating conditions cannot be always simulated because the performance of the LSI tester may be limited. The high-speed function test, however, can simulate conditions very close to the actual operating conditions.

This section describes the following limits of the high-speed function test. Create a test pattern observing these limits.

6.6.1 Limitation of the test pattern length

The length per test pattern must consist of 32,000 patterns MAX.

6.6.2 Test cycle (test rate)

The test rate is referred to as the cycle of one test pattern.
Currently, the test cycle limitation at NEC Electronics for a general high-speed function test is as follows:

Test cycle: 50 ns MIN.

6.6.3 Output determination time (strobe time)

The output determination time (strobe time) indicates the time required to verify the output value of the product against the expected value on the test pattern. Currently, up to two strobe times can be assigned per test pattern. However, only one strobe time can be assigned per pin. If three or more strobe times or several strobe times per pin must be established, each one must have its own test pattern.

Setting strobe time within 15 ns the beginning of the basic timing or with 10 ns before the end of the timing is prohibited.

Figure 6-5. Strobe Time

Caution Open-drain, GTL, and HSTL buffers are not real-time test targets.

6.6.4 Notes on high-speed function testing

To conduct the high-speed function test, execute MIN/MAX simulations under the following conditions. The results of both the simulations must match.

Confirm these simulations before and after placement and routing.
Note that I/O modulation cannot be used.

Ask NEC Electronics for the delay data (path delay file) after placement and routing.
At this time, the load capacitance data file (DIF FILE) for the output pins used for simulation is necessary.
Submit this file to NEC Electronics.
For the format of the DIF file, see APPENDIX C ALBATROSS AND DIF FILE FORMATS.

The purpose of these simulations is to detect the possibility of occurrence of problems when inspection is performed with an LSI tester. Therefore, conditions different from the actual operating conditions must sometimes be set.

Specify settings of the time condition for input signals, the output determination time (strobe time), and the test cycle (test rate) for each phase in "High-speed function test guidelines".
<1> MAX. simulation conditions
Test cycle (T): User-specified value
Load capacitance (CL): Bidirectional pin: 125 pF, MAX. value of load capacitance with LSI tester Output pin: 90 pF
Strobe time: \quad Set to specified value -5 ns with skew of strobe time assumed to be -5 ns
<2> MIN. simulation conditions
Test cycle (T): User-specified value
Load capacitance (CL): 50 pF , MIN. value of load capacitance with LSI tester
Strobe time: \quad Set to specified value +5 ns with skew of strobe time assumed to be +5 ns

During real-time simulation, the simulation result may not converge in one pattern and the output may change at the next pattern, as shown in Figure 6-6.

If the simulation result is different between the MAX simulation and MIN simulation, take the following measures:

- Change the expected output value of the test pattern, which differs between the two test patterns, to " X " (Don't care).
Synthesize the test patterns (see Figure 6-6).
- Alternatively, include only the timing actually requiring inspection as the system, as the expected values.

Figure 6-6. Real-Time Simulation Results

Output value

Expected value after output synthesis

6.7 Testability (Fault Coverage)

6.7.1 Consideration of testability (fault coverage)

Fault simulation is a way to verify the testability (fault coverage) when an ASIC is developed. In other words, it diagnoses the validity of a test pattern created to test the functions of logic circuits and detects the faults that are not detected by that test pattern.

During the ASIC manufacturing process, various faults may arise. These faults are broadly classified into dynamic faults and static faults.

Dynamic faults create long delay paths, spikes, and timing violations. Such faults are caused by the operating environment or design errors.

Static faults are represented by physical damage to the chip such as routing shorts and opens. In most of the cases, the production process is responsible for these faults. Logic simulation verifies the functions and timing of a created circuit. However, it does not verify the test efficiency of a test pattern for detecting static faults in the chip actually produced. Fault simulation defines static faults in the circuit and verifies whether faults have been accurately detected by the input test pattern from the output pins of the ASIC developed.

The purpose of fault simulation is to inspect how efficiently test patterns can detect a fault at the boundary of the function blocks of the created circuit. The test efficiency of these test patterns is called testability (fault coverage) and is expressed as a percentage to indicate how well the test patterns can detect the faults in the circuit.

$$
\text { Testability (fault coverage) }=\frac{\text { Number of faults detectable by given test input pattern }}{\text { Total number of faults in circuit tested }} \times 100(\%)
$$

If the testability (fault coverage) is low, the LSI may not be tested well and defective products may be shipped.
NEC Electronics recommends that the fault coverage, as far as possible, be made at least 90% in order to raise the quality of the product.

To improve testability (fault coverage), it is recommended to provide a test circuit at the circuit design stage and to employ the scan path test method.

6.7.2 Principle of fault simulation

Fault simulation generally operates by the same algorithm as the logic simulation that tests the logical functions. In the execution of fault simulation, however, the faults can be set in the circuit. Figure 6-7 shows examples of fault simulation.

Figure 6-7. Concept of Fault Simulation (1/2)
(a) Circuit example

It is assumed that this circuit has a fault and that the output of the 2-input AND gate H is always at the low level. If an input signal the same as Figure 6-7 (c) is input in this case, it can be seen that the result of output " g " will be different (see Figure 6-7 (c) and (d)). Accordingly, this fault can be detected by these test patterns.
(c) Observation of point e and point f

b

d

(d) Fault result of AND H

c

d

<e> \qquad

There may also be cases of a fault in which the output of the 2 -input AND gate I is always at the low level.
As shown in Figure 6-7 (e), this input signal (test pattern) becomes the same as the test pattern in Figure 6-7 (c), which shows that they are ineffective in detecting this fault.

Figure 6-7. Concept of Fault Simulation (2/2)
(e) Fault result of AND I

<f> \qquad

Fault simulation defines these types of faults one by one with respect to the internal circuit and checks whether the defined faults can be detected at the output pin by performing simulation.

The types of faults that can generally be defined by fault simulation are called single degenerate faults.
The following two types of single degenerate faults are defined in circuits:
$<1>$ Stuck-at-1: Fault where a given part is fixed at the high level ("1")
<2> Stuck-at-0: Fault where a given part is fixed at the low level ("0")

6.8 Consideration of System Simulation

System simulation is a method for checking the functions of a gate array under development by simulating the operations of the gate array in an environment close to the actual operating environment, such as on a board or in equipment.

After checking the functions of the gate array in equipment, the test pattern of the gate array alone is extracted by monitoring the signals at the input/output pins of the gate array.

This test pattern can be used as a test pattern for LSI testing. However, be sure to confirm that there is no problem (that the points to be noted in creating the test pattern are satisfied) by executing a simulation of only the gate array.

Figure 6-8. Creating Test Patterns by System Simulation

CHAPTER 7 MULTIFUNCTION BLOCKS

The CMOS-N5 Series offers the following multifunction blocks, in addition to the normal function blocks. This chapter explains the functions and usage of each multifunction block.

- Buffer with fail-safe function
- Buffer with on-chip pull-up/pull-down resistors
- Oscillator
- Memory block
- Megamacros (under development)

7.1 Buffer with Fail-Safe Function

Because input voltage higher than VDD cannot be applied to a conventional gate array, no I/O voltage can be applied when the supply voltage of the gate array is turned off. A buffer with a fail-safe function can accept voltage even if the supply voltage to the gate array is off.

If a high-level signal is input to the normal input buffer while the power supply to the gate array is off, voltage is applied to the power line via a protection diode (see Figure 7-1). Also, if a high-level signal is input to N -ch open drain pins while the power supply to the gate array is off, voltage is applied to the power line via a protection diode. The buffer with a fail-safe function prevents voltage being applied to the power line when the supply voltage to the gate array is off, even if a high-level signal is input. It can therefore be used for hot insertion and removal as long as the specified static voltage condition is satisfied.

Figure 7-1. Equivalent Circuit Diagram for Buffer with Fail-Safe Function
(a) Conventional input buffer

(c) Conventional N-ch open-drain buffer

(b) Input buffer with fail-safe function

(d) N-ch open drain with fail-safe function

7.2 Input/Output/Bidirectional Buffers with On-Chip Pull-Up/Pull-Down Resistors

The CMOS-N5 Series has input buffers, Schmitt input buffers, 3-state output buffers, N-ch open-drain output buffers, bidirectional buffers, Schmitt input bidirectional buffers, and I/O blocks with on-chip pull-up/pull-down resistors. By using these, a more compact system can be created.

For the name of each block, contact NEC Electronics.

Pull-up resistor

Pull-down resistor

During simulation, undefined (X) or high-impedance (Z) values cannot be input to the input pins of the input buffers with on-chip pull-up/pull-down resistors and bidirectional buffers.

The expected output value must be set to high impedance (Z) or don't care (X) when the output pins of 3-state output buffers and bidirectional buffers with on-chip pull-up/pull-down resistors are not active.

7.3 Oscillator

7.3.1 Configuration of oscillator

Three types of dedicated oscillator blocks are provided for configuring an oscillator: one using external feedback resistors, one using internal feedback resistors, and one that includes an oscillation stop function. An oscillator can be configured using any of these blocks simply by connecting a resonator, capacitor, and limiting resistor to the external pins. Note that the maximum number of dedicated oscillator blocks that can be used is two (three or more blocks are not supportable). When two blocks are used, be sure to place the blocks at opposite polarity to prevent mutual interference, and design so that each circuit operates on a separate clock. If it is necessary to use more than one block, contact NEC Electronics.

In addition, do not use the clock generated by the oscillator on the both rising and falling edges.
The recommended oscillation frequency range and the combination of blocks for oscillator configuration are shown in Table 7-1.

For the configuration of an oscillator block whose placement is restricted, see the tables concerning pins that can be used for oscillators in CMOS Gate Array, Embedded Array Package Design Manual (A16400E). When using an oscillator block that includes a stop function, be sure to control stopping the oscillator from an external source. Note that although there is no restriction on the placement of the stop control pin, it should be placed as close as possible to the oscillator block.

Table 7-1. Recommended Oscillation Frequency Range and Configuration

Feedback Resistor		Stop Function	Configuration		Frequency	Placement Restrictions
			Input	Output		
External		$1 \mathrm{M} \Omega$	No	OSI4	OSO9	MHz band
Internal		No	OSI1	OSO1	MHz band	Yes
	Yes	OSI2	OSO7			

Figure 7-2. Example of Oscillator Configuration

Remark Evaluation using an evaluation sample (ES or CS) is required to determine capacitors Cin and Cout, limiting resistor Rd, and current consumption.

7.3.2 Description of oscillator

Describe as follows when using an oscillator.

Figure 7-3. Oscillator Configuration (1/2)
(a) $\mathrm{OSI1}+\mathrm{OSO1}$

(b) OSI4 + OSO9

Remark When using OSO9, an external feedback resistor with a value of $1 \mathrm{M} \Omega$, $R \mathrm{f}$, is required.

Figure 7-3. Oscillator Configuration (2/2)
(c) $\mathrm{OSI}+\mathrm{OSO7}$

Caution The input pin (XT1) must be set to high level when oscillation is stopped.

Remark The output of O 2 is low level when oscillation is stopped. The equivalent circuits and truth tables of OSI2 and OSO7 are shown below.

OSI2 Truth Table

OSO7 Truth Table

I1	EN	XT2	O2
0	0	1	1
1	0	0	0
1	1	0	0
0	1	X	X

Describe the test pattern of an oscillator as follows.

- Use the inverse of the pattern transmitted to the internal circuit as the input pattern of the input pin (XT1) of OSI1, OSI2, and OSI4.
- Use the same pattern that was transmitted to the internal circuit as the output pattern of the output pin (XT2) of OSO1, OSO7, and OSO9.
- Always input 0 to the stop control pin of OSO7 in the DC test pattern.

The pattern transmitted to the internal circuit and the pattern output to the output pin (XT2) of OSO1, OSO7, and OSO9 is the inverted input pattern.

7.3.3 Using oscillator (resonator) and CTS together

When using an oscillator (resonator) and CTS together, the CTS buffer must not be in an unstable state before oscillation starts, so implement a function that fixes the output value of the CTS buffer by inserting a gate circuit in front of the CTS buffer and connecting the reset pin of the F/F, etc., to that circuit.

Figure $7-4$ shows an example of the recommended circuit configuration.

Figure 7-4. Example of Recommended Circuit Configuration

Remark Add a CTS reset input circuit (circuit in the dotted lines) between the oscillator output and the CTS buffer and ensure that the CTS output value is fixed when a reset occurs.

7.3.4 Notes on configuring an oscillator

Because the CMOS-N5 gate array has an oscillation dedicated block, it can be used to configure an oscillator by connecting a resonator and external constants outside the package. Although an oscillator can be easily configured, certain differences from logic circuits must be noted because an oscillator is an analog circuit that operates at a high frequency. In order for the oscillator to operate stably, it is necessary to optimize the external constants (input capacitor, output capacitor, and limiting resistor). In addition, because the oscillator is an analog circuit, the following points must also be noted.
<1> Place VDD and GND as follows around the oscillator pins (oscillator).

Remarks 1. Do not include the OSOx (oscillator) block pin as a target of the simultaneous operation review.
2. VDD and GND surrounding the oscillator pins can be used in the simultaneous operation review.
<2> Place the pins that may cause malfunction due to noise such as clock pins and reset pins as far as possible from the oscillator pins.
$<3>$ Output buffers are a source of noise, and so should be placed as far as possible from the oscillator pins (oscillator).
<4> The following points must be noted regarding the printed circuit board.

- Place the input and output pins, and the resonator and external constants of the oscillator as close together as possible, and keep the length of the wiring between them as short as possible.
- Keep the length of the wiring between the GND of the capacitors and of the gate array as short as possible. Use as thick a wiring line as possible.
- Keep the leads of the resonator and capacitors as short as possible. Secure the resonator and capacitors onto the printed circuit board to minimize the effects of mechanical vibration.
- Enclose the external constants in a GND pattern as far as possible.

Figure 7-5. Example of GND Pattern on Board

$\star<5>$ To input the clock generated by the external oscillator from the input pins (OSI1, OSI2) of the oscillation block, connect it to the XIN (OSI1, OSI2) side and leave the XOUT (OSO1) side open. Since the oscillator is logically an inverter, a signal consisting of the inverted signal is input to the internal circuit.

The following points must be noted during evaluation to determine the external constants.

- It is recommended to attach an overtone circuit (LC). Figure 7-6 shows circuit examples.
- Evaluate the oscillator considering variations in the oscillation start time and voltage (etc.).
- Use the printed circuit board that is to be actually used (because the oscillation operation range may fluctuate due to the difference in the dielectric constant of the board).
- Check the external constants using a developed CMOS-N5 gate array (ES or CS) and the resonator to be actually used.

Figure 7-6. Example of Overtone Circuits

Remark The section within the broken lines is the overtone circuit.

7.3.5 Constants of external circuit

An evaluation of the matching with the resonator is required to generate a clock signal. Table $7-2$ shows an example of the criteria for this evaluation. Determine the parameters to be measured through consultation with the resonator manufacturer.

Table 7-2. Example of Criteria

Items to Be Measured	Determination Criteria
<1> Oscillation frequency	Frequency must be within accuracy of resonator
<2> Oscillation start voltage (V_{s})	2.0 V or less
$<3>$ Oscillation hold voltage (V_{h})	$\mathrm{V}_{\mathrm{h}} \leq \mathrm{V}_{\mathrm{s}}$
<4> Operation on power application	Check oscillation by repeatedly turning power on and off
<5> Current consumption	As low as possible
<6> Peak value of oscillated waveform	$\begin{aligned} & 3.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OH}} \leq \mathrm{V}_{\mathrm{DD}} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LL}}, \mathrm{VoL} \leq 1.3 \mathrm{~V} \end{aligned}$
<7> Duty factor	50\% $\pm 10 \%$

Note that oscillation is evaluated with an ES or CS model. However, because all the gate array, resonator, and external constants are subject to variations due to production and operating conditions, take these variations into consideration during evaluation.

When evaluating parameters $<4>$ through $<7>$ above, fluctuations in the power supply and temperature of the gate array must also be taken into consideration. Measure these parameters under the following MIN., TYP., and MAX. conditions.
[Example] When fluctuations in power supply and temperature are taken into consideration:
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
VDD $=5 \mathrm{~V} \pm 10 \%$
Measure these parameters under the following MIN., TYP., and MAX. conditions.

	MIN.	TYP.	MAX.
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	-40	25	+85
$\mathrm{~V}_{\mathrm{DD}}(\mathrm{V})$	5.5	5.0	4.5

Remark The values in this table indicate the conditions of the MIN., TYP., and MAX. values of the propagation delay time (tpD) of the gate array, and do not refer to the MIN., TYP., and MAX. values of the oscillation frequency of the resonator.

Table 7-3 shows the resonators externally connected to OSO7 (OSO1) or OSO9, the recommended external constants, and the circuit configuration. This data was evaluated in cooperation with each resonator manufacturer.

Caution If the frequency exceeds 40 MHz when using a resonator, be sure to contact NEC Electronics beforehand.

Table 7-3. List of Resonator Evaluations (1/2)
(a) $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$

Material	Resonator Manufacturer	Frequency(MHz)	Product Name		Capacitor	Recommended External Constant			Circuit Configuration Note 1
			Old	New		$\mathrm{Cin}(\mathrm{pF})$	Cout(pF)	$\mathrm{Rd}(\Omega)$	
Ceramic	Murata Mfg. Co., Ltd.	16	CSA16.00MXZ040	-	External	30	30	22	<1>
		32	CSA32.00MXZ040	-		10	10	22	
		32	CSACW3200MX01	CSACW32M0X51-R0		10	10	22	
		40	CSA40.00MXZ040	-		7	7	22	
		2	CSTS0200MG06	CSTLS2M00G56-B0	Internal	-	-	1.5K	<2>
		2	CSTCC2.00MG0H6	CSTCC2M00G56-R0		-	-	1.5K	
		4	CSTS0400MG06	CSTLS4M00G56-B0		-	-	680	
		4	CSTCC4.00MG0H6	CSTCC4M00G56-R0		-	-	680	
		8	CSTS0800MG06	CSTLS8M00G56-B0		-	-	220	
		8	CSTCC8.00MG0H6	CSTCC8M00G56-R0		-	-	220	
		16	CST16.00MXW040	-		-	-	22	<1>
		16	CSTCV16.00MXJ0C4	CSTCV16M0X54J-R0		-	-	100	<2>
		40	CSTCW4000MX01	CSTCW40M0X51-R0		-	-	22	
	Kyocera Corporation	4.00	PBRC4.00HR	-	Internal	-	-	3.3K	<2>
		8.00	PBRC8.00HR	-		-	-	1.5K	
		16.00	SSR16.00BR-MN1	-		-	-	330	
		20.00	SSR20.00BR-H8S	-		-	-	100	
		33.86	SSR33.86BR-ALPNote 2	-		-	-	-	<3>

Notes 1. The figures in this column correspond to the figures on Figure 7-7 Oscillator Configuration Diagram.
2. Surface mount type. A $6.8 \mathrm{k} \Omega$ external feedback resistor is required for OSO7 (OSO1).

Remarks 1. Oscillation environment: $\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
2. External feedback resistor of OSO9: $1 \mathrm{M} \Omega$

Table 7-3. List of Resonator Evaluations (2/2)
(b) $V_{D D}=3.3 \pm 0.3 \mathrm{~V}, V_{D D}=3.0 \pm 0.3 \mathrm{~V}$

Material	Resonator Manufacturer	Frequency (MHz)	Product Name		Capacitor	Recommended External Constant			Circuit Configuration Note 1
			Old	New		$\mathrm{Cin}(\mathrm{pF})$	Cout(pF)	$\mathrm{Rd}(\Omega)$	
Ceramic	Murata Mfg. Co., Ltd.	2	CSTCC2.00MGOH6 ${ }^{\text {Note } 2}$	CSTCC2M00G56-R0 ${ }^{\text {Note } 2}$	Internal	-	-	1.5 K	<2>
		4	CSTCR4M00G55-R0 ${ }^{\text {Note } 2}$	-		-	-	680	
		4	CSTS0400MG06	CSTLS4M00G56-B0		-	-	680	
		5	CSTCR5M00G55-R0 ${ }^{\text {Note } 2}$	-		-	-	470	
		5	CSTS0500MG06	CSTLS5M00G56-B0		-	-	470	
		8	CSTCE8M00G55-R0 ${ }^{\text {Note } 2}$	-		-	-	220	
		8	CSTS0800MG06	CSTLS8M00G56-B0		-	-	220	
		10	CSTCE10M0G55-R0 ${ }^{\text {Note } 2}$	-		-	-	150	
		10	CSTS1000MG06	CSTLS10M0G56-B0		-	-	150	
		16	CSTCE16M0V53-R0 ${ }^{\text {Note } 2}$	-		-	-	100	
		20	CSTCG20M0V53-R0 ${ }^{\text {Note } 2}$	-		-	-	68	
		32	CSTCG32M0V53-R0 ${ }^{\text {Note } 2}$	-		-	-	47	

Notes 1. The figures in this column correspond to the figures on Figure 7-7 Oscillator Configuration Diagram.
2. Surface mount type.

Remarks 1. Oscillation environment: $\mathrm{VDD}=3.3 \pm 0.3 \mathrm{~V}, \mathrm{VDD}=3.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
2. External feedback resistor of OSO9: $1 \mathrm{M} \Omega$

The circuit configuration is shown in Figure 7-7. In addition, it is recommended to reduce the capacitance of the system board (reduce the influence on C 1 (CIn) and C 2 (Cout) as much as possible.

Figure 7-7. Oscillator Configuration Diagram

Circuit configuration <1> (On-chip Rf type)

Rf

Circuit configuration <2> (On-chip Rf type)

Remark Rf: Feedback resistor

7.4 Memory

The CMOS-N5 Series can be used to place memory blocks. This section explains the types of memory blocks and the points to be noted in using the memory blocks.

7.4.1 Types of memory blocks

The types of memory blocks available in the CMOS-N5 Series are listed below.

- Single-port RAM
- Dual-port RAM

Lists of each memory block are provided in Table 7-4. These memory blocks can also be mixed together.

Table 7-4. Memory Blocks
(a) Single-port RAM

Number of words	16	32	64	128	256	512	1 K	2 K
4		RB47	RB49	RB4B	RB4D	RB4F	RB4H	RB4M
8	RB87	RB89	RB8B	RB8D	RB8F	RB8H	RB8M	
10			RBAB	RBAD	RBAF	RBAH		
16	RBC7	RBC9	RBCB	RBCD	RBCF	RBCH	RBCM	
20			RBEB	RBED	RBEF	RBEH		
32	RBH7	RBH9	RBHB	RBHD	RBHF	RBHH		
40			RBKB	RBKD	RBKF	RBKH		

(b) Dual-port RAM

Number of bits	16	32	64	128	256	512
4	R947	R949	R94B	R94D	R94F	R94H
8	R987	R989	R98B	R98D	R98F	
10			R9AB	R9AD		
16	R9C7	R9C9	R9CB	R9CD	R9CF	
20			R9EB	R9ED		
32	R9H7	R9H9	R9HB			
40			R9KB			

7.4.2 RAM blocks

As shown in Figures 7-8 and 7-9, the high-density RAMs of the CMOS-N5 Series have a bit/word architecture based on basic macros (hard macros). The BIST (Built-In Self Test) circuit and on-chip selector are configured by soft macros. This architecture eases restrictions on placement and routing, and reduces complexity when multiple RAMs are incorporated.

The memory test is a test-dedicated macro, called BIST, that is incorporated in a soft macro. Three test pins eliminate the trouble of directly testing the I/O of all the pins.

When using an NEC Electronics RAM, be sure to use an NEC Electronics standard test circuit (BIST).

Figure 7-8. Single-Port RAM Circuit Configuration

Figure 7-9. Dual-Port RAM Circuit Configuration

7.5 Writing Memory Blocks

When writing memory blocks as circuit diagrams or connection data, bear in mind the following points.

7.5.1 Selecting memory blocks

The RAM blocks of the CMOS-N5 Series are configured as soft macros. Therefore, RAM blocks with any bit/word configuration can be placed by combining the basic memory cells. However, the blocks that are used frequently are registered in advance as simulation models (see CMOS-N5 Series Memory Block Library (A14683E)). Select the block with the bit/word size closest to your needs from these models.

If a memory block with the desired size does not exist because the number of bits is exceeded, connect blocks of the same word size with different bit size in parallel.

Conversely, if the number of words is exceeded, divide the addresses by creating a chip select signal with a decoder, in the same manner as an ordinary memory circuit.

When using a memory with an unmatched number of bits and words, use soft macros in the way described above. For the circuit configuration and test circuit (BIST) configuration, consult NEC Electronics.

7.5.2 Using memory blocks

Memory blocks, as with other function blocks, have specifications for fan-in (F/I) and fan-out (F/O); see the CMOSN5 Series Memory Block Library (A14683E). The blocks must be connected without exceeding restrictions such as the limit on the number of fan-outs.

7.6 Memory Test

7.6.1 RAM test

Because the RAM block of the CMOS-N5 Series employs BIST, the limits on the number of test patterns is relaxed, so that the user can easily check the memory.

BIST consists of signal generators for test signals including test address, test data, and test enable, as well as an expected value generator, and a comparator, as shown in Figure 7-10. The user simply needs to connect the three pins, TIN, TEB, and TOUT, to external pins to test a RAM. When placing two or more RAM blocks, the test inputs (TIN and TEB) can be shared with the respective pins of the other RAM blocks. The test output (TOUT), however, cannot be shared. Connect the test output to different external pins. Figure 7-11 shows a connection example.

To test RAM, basically, data is applied from an external input pin to a test input pin (TIN or TEB), and a test output (TOUT) extracted from an external pin. If the signal is inverted or a clock is necessary because an inverter or flipflop is used, the basic test pattern cannot be used. The final state of the user's test pattern must be in a state in which the test can be conducted (a state in which TIN, TOUT, and TEB can transfer the RAM test signal from external pins). The RAM test pattern is prepared by NEC Electronics.

Figure 7-10. Test Circuit (BIST) Block Diagram

Figure 7-11. RAM Test Circuits (1/2)
(a) Connection example for placing one RAM block

Figure 7-11. RAM Test Circuits (2/2)
(b) Connection example for placing multiple RAM blocks

(1) Be sure to use one TEB input and TIN input. Connect each input to the respective RAM. Even if the capacitance of the RAM block differs, be sure to use one TEB input and TIN input commonly as shown in the figure.
(2) The TOUT pins must be made independent and must be output to external pins.

7.6.2 Assigning test I/O pins (TIN, TEB, and TOUT)

(1) When there are unused pins

If there are unused pins, excluding power supply pins and NC pins, they can be used for testing.

(2) When there are no unused pins

Pins used for logic can also be used as test pins. The points noted below must be considered when making pins alternate-function. Note that the TEB pin is a dedicated pin, therefore it cannot be used for other functions.

<1> Making the TIN pin alternate-function

The TIN pin can be used as a normal input pin and a normal output pin. To use as a normal output pin, the TEB signal must be made an enable signal and the pin must be made bidirectional. The pin then can be used as an output pin during normal usage and as an input pin during testing. Figure 7-12 shows a connection example.
<2> Making the TOUT pin alternate-function
The TOUT pin can be used as a normal input pin and a normal output pin. To use as a normal input pin, the TEB signal must be made an enable signal and the pin must be made bidirectional. The pin then can be used as an input pin during normal usage and as an output pin during testing. To use as a normal output pin, it can be used in combination with an internal selector circuit, and the pin can be switched by the TEB signal. Figure $7-13$ shows a connection example.

Caution Pins used for the GTL interface buffer, N-ch open-drain buffer, and CMOS 5 V tolerant buffer cannot be made alternate-function pins.

- Handling pins on the board

Handle each pin using one of the following procedures.

```
<1> TEB pinNote 1: - Use a pull-up buffer
- Pull up externally
- Externally connect to VDD
<2> TIN pinNote 2: •Use a pull-up buffer
- Use a pull-down buffer
- Externally connect to VDd
- Externally connect to GND
```

Notes 1. Handle in the direction that is not the test mode.
2. When not alternatively used as a normal pin

Figure 7-12. Making TIN Pin Alternate Function
(a) Alternate-function use with normal input pin

(b) Alternate-function use with normal output pin (bidirectional pin)

Figure 7-13. Making TOUT Pin Alternate Function
(a) Alternate-function use with normal input pin (bidirectional pin)

(b) Alternate-function use with normal output pin

* 7.6.3 Checking connection of RAM test circuit

To check whether or not the BIST circuit is properly connected, carry out checking by RAMCHK flow on OPENCAD generating and adding the connection confirmation patterns (nine patterns) as shown in Figure 7-14 to the end of the user-provided test pattern (Test pattern for DC check: if the DC pattern is independent, then it is this pattern) by using OPENCAD RAMCHK. Be sure to perform RAMCHK before submitting the test pattern to NEC Electronics. In addition, set the status in which input and output for the pin signals required to the BIST test (TEB, TIN, and TOUTx) can be executed at the end of the test pattern (Test pattern for DC check: if the DC pattern is independent, then it is this pattern.)

The RAM-BIST test pattern is provided by NEC Electronics and thus the user does not need to generate it.

Figure 7-14. Example of Test Patterns

(1) Input other than RAM test pin:
(2) TEB:
(3) TIN:
(4) TOUT:
(5) Output other than RAM test pin:

Input 9 patterns in such a way that the final value of the user test pattern is preserved.
First input a high level for 1 pattern and then input a low level for 8 patterns. First input a low level for 1 pattern and then input 8 patterns of repetitive 01 signals.
Set the expected output value to 001000100 . When multiple RAM is placed, several TOUT outputs of the RAM must be output to the external pins (the RAM test is executed completely in parallel).
Set the expected output value to "X" (don't care).

Remark The connection check pattern of BIST is automatically generated by RAMCHK and thus it is not necessary to add it to the user's patterns in advance.

In addition, simultaneous checking can be carried out by connecting TIN and TEB in common in the gate array type RAM and cell-based IC type RAM.

7.7 Scan Path Test Block

It is extremely difficult to generate a test pattern that checks the operation of an LSI efficiently with a circuit frequently using flip-flops and with a deep logical depth. Scan path testing can change the connections of all the internal flipflops of an LSI like shift registers. Therefore, the circuit can be tested efficiently by easily initializing all the flip-flops of a circuit with a deep logical depth and reading all the flip-flop states in a certain state.

For details, see NEC SYSTEM LSI DESIGN Design For Test User's Manual.

Figure 7-15. Theory of Scan Path Test Method

Remark In_{n} : Input signal when testing a combination circuit, or normal input
On: Diagnostic output when testing a combination circuit, or normal output
SIN: Input signal when testing a sequential circuit
SMC: Mode switching signal
SCK: Test clock
SOT: Diagnostic output when testing a sequential circuit

APPENDIX A POWER CONSUMPTION (PRELIMINARY)

An accurate calculation of the power consumption of internal circuits requires a very large amount of data, such as the capacitance, the number of synchronously operating blocks, and the operating frequency of each block. Consequently, the calculation becomes too complicated to be performed. On the basis of assumptions concerning such items as circuit operation and configuration, NEC Electronics provides reference values for power consumption. It must be noted that these values may be larger or smaller than the actual values, depending on factors such as the user's actual circuit and its configuration.

This chapter provides a power consumption calculation method that divides the power consumption of the internal circuit into combination circuits, latches, flip-flops. This calculation should be used to review circuit power consumption. However, if the results are to be used to calculate the life-span of a battery, an extra margin should be provided.

Internal cell power consumption

```
\SigmaPdocll = \Sigma Pdgate + \Sigma Pdlatch + \Sigma Pdf/F + \Sigma Pdt
```


(1) Combination circuits

$$
\text { PDGate }=6.73 \times \mathrm{f} \times \text { Cell }(\mu \mathrm{w})
$$

f: Data operating frequency
Cell ${ }^{\text {Note }}$: Number of cells that operate at f

Note "Cell" is not the number of blocks.

(2) Latches

$$
\text { PDLatch } \left.=\left(\mathrm{PD}_{\mathrm{D}(\text { Gate }}=\mathrm{ON}\right) \times \mathrm{N}+\mathrm{PD}(\text { Gate }=\mathrm{OFF}) \times(1-\mathrm{N})\right) \times \mathrm{f} \times \text { Cell }(\mu \mathrm{W})
$$

$\operatorname{PD}($ Gate $=0 \mathrm{~N}): ~ 3.43(\mu \mathrm{~W} / \mathrm{Cell} / \mathrm{MHz})$
$\mathrm{N}: \quad$ Gate ON rate $=\frac{\mathrm{T}(\text { Gate }=\text { ON })}{\mathrm{T}(\text { Gate }=O N)+\mathrm{T}(\text { Gate }=\text { OFF })}$
$\left.\mathrm{PD}_{\mathrm{D}(\text { Gate }}=\mathrm{OFF}\right): 0.23(\mu \mathrm{~W} / \mathrm{Cell} / \mathrm{MHz})$
$\mathrm{f}: \quad$ Data operating frequency
Cell ${ }^{\text {Note }}$: \quad Number of cells that operate at f

Note "Cell" is not the number of blocks.
(3) D-F/F, JK-F/F, shift registers, and counters

PdF/F $=\frac{2 \times \mathrm{P}_{\mathrm{D} \text { (OUTPUT) })}+\mathrm{P}_{\mathrm{D}(\mathrm{CLK})} \times(\mathrm{N}-2)}{\mathrm{N}} \times \mathrm{f} \times$ Cell $(\mu \mathrm{W})$
Pd(OUtPUT): 1.19 ($\mu \mathrm{W} /$ Cell $/ \mathrm{MHz}$)
Pd(CLK): $\quad 0.68(\mu \mathrm{~W} / \mathrm{Cell} / \mathrm{MHz})$
$\mathrm{N}: \quad \frac{\mathrm{T}_{\text {(DATA) }}}{\mathrm{T}_{\text {(CLK) }}}$
T(DATA): Data cycle
T(CLK): Clock cycle
f: Clock operating frequency
Cell ${ }^{\text {Note }}$: Number of cells that operate at f

Example The following indicates the case when the clock has a cycle speed double that of 1 data cycle. $N=1 / 0.5=2$

Note "Cell" is not the number of blocks.
(4) $T-F / F$

$$
\text { PDT }=3.8 \times f \times \operatorname{Cell}(\mu \mathrm{W})
$$

$\mathrm{f}: \quad$ Clock operating frequency
Cell ${ }^{\text {Note }}$: Number of cells that operate at f

Note "Cell" is not the number of blocks.
(5) Load dependency of power consumption (preliminary)

The power consumption depends to a great extent on the load capacitance, as expressed by

$$
P D=C V^{2} f
$$

Figure A-1. Load Dependency of Power Consumption

Under study

The unit power consumption when $\mathrm{F} / \mathrm{O}=2$ is an extremely small $3 \mu \mathrm{~W} / \mathrm{MHz}$. Because power consumption has a significant effect on reliability, a realistic value must be used.

The value covers a distribution of about 70\% of load values, based on statistical data accumulated at NEC Electronics, such as wiring length and pin pairs.

```
Load = (F/l equivalent)
Example
    F/O: + L:
```

(Under study)

APPENDIX B PROPAGATION DELAY TIME

The delay time of each block varies significantly with the input signal waveform as shown in Figure B-1. With the CMOS-N5 Series whose delay time is as short as several 100 ps at each block, the influence of the input waveform is not negligible.

Figure B-1. Delay Time Increase Due to Input Waveform

$$
\mathrm{tr}_{\mathrm{r}} / \mathrm{tf}(\mathrm{MIN})<\mathrm{tr}^{\prime} / \mathrm{tt}_{\mathrm{f}}(\mathrm{TYP})<\mathrm{tr} / \mathrm{tt}_{\mathrm{f}}(\mathrm{MAX})
$$

Consequently, the simulator considers the input waveform of each block so that a highly accurate delay simulation is executed. However, discrepancies in results due to the input waveform cannot be listed in the block library Note. For this reason, the accuracy of the propagation delay time calculations listed in the block libraryNote are valid only under certain limited conditions. The propagation delay times of critical paths, in which the load is likely to be light, are calculated accurately in the CMOS-N5 Series.

Note that Figure B-1 is indicating a tendency only. Verify the actual value by performing simulation.

Note CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E)

APPENDIX C ALBATROSS AND DIF FILE FORMATS

C. 1 ALBATROSS File Format (Circuit Name.alb)

(1) File format

The ALBATROSS file format has the following restrictions:

- Free format
- Parameters must be separated by blank space or a colon (:).
- Each statement must be terminated with a semicolon (;).
- Items within quotes ("") can be repeated.
- Maximum of 80 columns per line (when the last character is not a semicolon, the line must continue on the next line)
- Identifiers, pin names, and units (NS fixed) must be specified in uppercase letters
- Pin names consist of a maximum of 64 characters
- The description of the timing data (MODULATION + CLOCK) is based on the limitations shown in 6.6 HighSpeed Function Test (Real-Time Test).

(2) File configuration

The ALBATROSS file consists of the following seven parameters.

*ALBATROSS	\ldots	File header
*TIMING	\ldots	Header
PERIOD	\ldots	Pattern period
MODULATION	\ldots	Input skew
CLOCK	\ldots	Clock pin
*END_OF_TIMING	\ldots	End record
*END	\ldots	File end

(3) Details of file

The details of each parameter are as follows:

(a) File header

Syntax: *ALBATROSS circuit;
Function: Pattern header

1: circuit (character string) circuit name
(b) Header

Syntax: *TIMING
Function: Header
(c) Pattern period

Syntax: PERIOD period_t time_unit;
Function: Period value of pattern

1: period_t	Pattern cycle
2: time_unit	Cycle unit

(d) Input skew

Syntax: MODULATION modulation_t time_unit: "pin";
Function: Value of skew added to input pin

1: modulation_t Value of input skew
2: time_unit Unit of value of skew
3: pin Pin name
(e) Clock

Syntax: CLOCK TYPE = type: "ch_time time_unit": pin;
Function: Definition of clock pin and clock waveform

- TYPE = type

P: Positive clock
N: Negative clock

- ch_time Waveform time
- time_unit Unit of change time
- pin Pin name
(f) End

Syntax: *END_OF_TIMING;
Function: End
(g) File end

Syntax: *END
Function: File end

(4) Example

*ALBATROSS CF191
*TIMING;
PERIOD 200 NS;
MODULATION 20 NS: IN1 IN2 IN3;
CLOCK TYPE = P: 50NS 150NS: CLK;
*END_OF_TIMING;
*END

C. 2 DIF File Format (Circuit Name.dif)

For details, see NEC SYSTEM LSI DESIGN OPENCAD OPC_VSHELL User's Manual (A16306E).
(1) File format

The DIF file format has the following restrictions:

- Free format
- The delimiter is a blank space.
- Maximum of 512 characters per line
- The first column of a comment line begins with "-".
(2) File configuration

The DIF file consists of the following three parameters:
DIF Header
/DESIGN Design block
/END End
(3) Details of file

The details of each parameter are as follows:
(a) Header

Syntax: DIF
Function: Header
(b) Design block

Syntax: /PIA
Function: All external pins (Vdd, GND, etc.)
(c) Condition block

Syntax: /PIN
Function: Overall design (such as value of pin capacitance added to output pin)
(d) End card

Syntax: /END
Function: Termination of DIF file

* (4) Example
*DIF opc_pinbe (1.11) 2002.12.12 (12:39:32)
/DESIGN 65880999
TECHNOLOGY = CMOSN5;
CONDITION = cmos_5.0V;
MASTER = 65880;
PACKAGE = LQFP;
PINS = 144;
LAYER = 3L;
/CONDITION 1

/PIN

ADO
DIR $=$ INPUT
;
DATA1
DIR $=10$
;
PC1
DIR = OUTPUT
;
/END PIN
/END CONDITION
/PIA
/EPIN PAD ADO

PAD = 77 \# dut_ID 22 pin_type IN BLOCK = XINB; DATA1

PAD = 24 \# dut_ID 179 pin_type IO BLOCK = XWN2; PCR1

PAD = 125 \# dut_ID 68 pin_type OUT
BLOCK = XBOD;
/END EPIN
/POWER PAD
GND PAD = 13 191;
VDD PAD $=14$;
/END POWER
/END PIA
/END DESIGN
*END

APPENDIX D DRAWING CIRCUIT DIAGRAMS AND TIMING CHARTS

D. 1 Drawing Circuit Diagrams

Today circuits are designed using an engineering workstation (EWS). The circuit diagram drawn by the user is converted to NEC format on the EWS or through the interface service offered by NEC Electronics.

When the user draws a circuit diagram, the following points should be kept in mind to ensure smooth interfacing with NEC Electronics.

D.1.1 Logic symbols

As a general rule, use the logic symbols that are in the block libraryNote. However, when there are differences between the EWS library and the block library Note, follow the format of the EWS library.

Note CMOS-N5 Series (5.0 V) Block Library (A13872E) and CMOS-N5 Series (3.3 V) Block Library (A15895E)

D.1.2 Block names (function names)

Input buffers and other blocks have different designations, but may have logic symbols that are virtually the same. In particular, the various input/output buffer interface levels cannot be determined from simulation results. Because of this, the block name should be entered so that it is easily understood.

In addition, since block names are displayed in advance in EWS libraries, entries do not have to be made when using the EWS.

D.1.3 Pin names (I/O pin name of block)

Block I/O pins are named in the order "H01, $\mathrm{H} 02, \ldots / \mathrm{NO} 1, \mathrm{~N} 02, \ldots$. ." If a block has more than one I / O pin, the pin names must be used whenever possible.

Pin names are usually displayed in EWS libraries. If a pin name is displayed, it does not have to be entered. For more information on displaying pin names, follow the instructions in the interface manual for the EWS.

D.1.4 Gate names (specific name of each block)

Enter the respective characteristic gate names for block names entered in a circuit diagram. A gate name must consist of no more than 255 alphanumeric characters. To avoid duplication of gate names and pin names, make the names unique.

When an EWS is used, there are special cases where the naming rules are a function of the system being employed. For details, follow the instructions in the interface manual for the EWS.

D.1.5 //O pin names

A pin name of up to 64 alphanumeric characters must be assigned to each I/O pin of the LSI device. Each pin name must be unique and must not duplicate a gate name.

When an EWS is used, there are special cases where the naming rules are a function of the system being employed. For details, follow the instructions in the interface manual for the EWS.

Figure D-1. Circuit Diagram Example

(1) Input pin names

The pin name of an input pin must consist of 1 to 64 alphanumeric characters.
In addition, undefined and high impedance states cannot be input to an input pin because this causes the measurement conditions to change during testing with the LSI tester, making measurement impossible. Undefined and high impedance states also cannot be input to the input pins of input buffers and bidirectional buffers with on-chip pull-up/pull-down resistors.
If undefined or high impedance states are input as a test pattern, an error will result when executing simulation.

(2) Bidirectional pin names

If the input and output of a bidirectional buffer are implemented from one pin, this must be named by using a bidirectional pin. The pin name must consist of 1 to 64 alphanumeric characters.

Figure D-2. Bidirectional Pin Names

When a bidirectional pin test pattern is generated, care must be taken with regard to the following points:
$<1>$ For switching from the output mode to the input mode, set the input and output signals to the same level.
<2> Do not set the control signal to the undefined state (if the state of the control signal becomes undefined, an undefined state is propagated to the input signal, generating an error in simulation).

During switching from the input mode to the output mode, an undefined state is propagated to the input signal due to the delay time of the control signal, generating an error in simulation. For such switching, it is important to configure the circuit so that an undefined state is not propagated to the input signal (see 6.3.6 Notes on switching I/O mode of bidirectional pin).

Figure D-3. Bidirectional Pin Test Pattern Generation

(3) 3-state output pin description

A 3-state output pin must be named as shown in the example in Figure D-4. The pin name must consist of 1 to 64 alphanumeric characters.

Figure D-4. 3-State Output Pin Names

Figure D-5. 3-State Output Pin Test Pattern Generation

D. 2 Handling Macros

The logic of a large-scale circuit is often designed using hierarchical techniques to enable block design in a system and to diversify the man-hours needed for design.

In the hierarchical design technique, functional units used in common are defined as macros (user macros). Each LSI chip is designed by connecting several macros to enable a specified function. In particular, a large-scale circuit is usually divided into several blocks, each of which is a hierarchical block and combined to configure the entire circuit.

When designing hierarchical circuits, note the following guidelines (see Figure D-6).
<1> Each hierarchical block should perform a single logical operation.
<2> Make the design in a way that the total structure and the signal flow can be understood at the top level hierarchy (the top level hierarchy should be drawn on a single page).
$<3>$ Whenever possible, design circuits that comprise a closed loop so that the loop fits within the macro.
<4> Input pins and clamps (if needed) must be on the same page.
<5> Note should be taken of the clock line flow. Ensure that delay differentials between pages do not exceed basic rules.
<6> Each macro (bottom hierarchy) must have a single function.
$<7>$ A page should not contain signal lines only (pass-through only).
<8> External I/O buffers can be specified only at the top level hierarchy. Avoid connecting I/O pins directly to an external device from a lower macro other than that at the top level hierarchy.
<9> A macro should not contain input, output, and bidirectional buffers.

Figure D-6. Handling Macros
(a) Good example

Top level hierarchy

First level hierarchy
(b) Bad example

D. 3 Preparing Timing Charts

If the user provides NEC Electronics with a timing chart for generating the test patterns, or even if the user generates the test patterns, the timing charts must be drawn using the guidelines explained in this section.

(1) Entry method

The pin names of all I/O pins must be written in the vertical column. For each pattern, apply 1 or 0 level for inputs and the expected values for outputs. Continuous sequential numbers, starting with 1, must be assigned to the test patterns.
Figure D-7 shows an example of filling out the timing chart.

Figure D-7. Timing Chart Entry

(2) Timing discrepancies

Because the output in actual circuits changes after the input pattern is applied, there is a timing delay between the input and output, as shown in Figure D-8 (a). However, the delay time between the input and output can be ignored when test patterns are generated, as shown in Figure D-8 (b). The patterns must be generated so that the entire circuit operates at the same timing.

Figure D-8. Timing Chart Example

(3) Handling of " X " (undefined or don't care)

Depending on the configuration of the circuit, the value of an output pin may not be determined in the first few patterns. In that case, specify " X " (undefined) as the expected value of the output pin. When specifying "don't care" in cases where, due to the operation of the circuit it cannot be determined whether the value will become " 1 " or " 0 ", only specify " X " as the expected output value during the corresponding period. In this case, the expected value will not be collated.

However, do not specify " X " for the input pin. If " X " is inadvertently specified for the input pin, an error will occur during simulation. If the input level of a certain period can be either high level or low level, specify either " 1 " or "0".

(4) Handling of " Z " (high impedance)

The output pins of a 3-state output buffer or a bidirectional buffer may become high impedance " Z " in some cases. In these cases, specify " Z " as the expected output value.
However, do not specify " Z " for the input pin. If " Z " is inadvertently specified for the input pin, an error will occur during simulation.
(5) Repeated pattern

When the same waveform is repeatedly input, such as in clock input, it can be efficiently input as a repeated pattern.

(6) Specifying critical path

In terms of system design, signal paths in which speed (the delay time between input and output) is especially important and paths in which the propagation delay time between input and output must be within a certain period, can be specified so that they satisfy the required performance, if clarified at the time of design. If this is the case, specify the corresponding paths as critical paths. Critical paths include the following three types:

- Maximum delay time (tpd) as an absolute value (MAX.)
- Minimum delay time (tpd) as an absolute value (MIN.)
- Relative variable range between the paths

Specification of a critical path can be effective only for the delay time between input and output. A maximum of six paths can be specified as critical paths.

Entry example

	Mode No.	Assigned Pin	Output Load (pF)	Pattern No.	Delay Time (ns)		Determination
					MIN.	MAX.	
1	1	IN1 \rightarrow OUT2	15	131	13	50	O
2							
3							
4							
5							
6							

APPENDIX E LIST OF BLOCKS

Some blocks cannot be used, depending on the power supply voltage.
\checkmark : Can be used
Blank: Cannot be used

E. 1 Interface Block

E.1.1 CMOS Level

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Input Buffer	FI01	\checkmark	\checkmark	-	3 (1)
	FID1	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-down	3 (1)
	FIU1	\checkmark	\checkmark	5 k ¢ Pull-up	3 (1)
	FIW1	\checkmark	\checkmark	$5 \mathrm{k} \Omega$ Pull-up	3 (1)
	FIS1W	\checkmark	\checkmark	Schmitt	6 (1)
	FDS1W	\checkmark	\checkmark	Schmitt 50k Pull-down	6 (1)
	FUS1W	\checkmark	\checkmark	Schmitt 50k Pull-up	6 (1)
	FWS1W	\checkmark	\checkmark	Schmitt 50k Pull-up	6 (1)
Input Buffer with Failsafe	FIA1	\checkmark	\checkmark	-	3 (1)
	FDA1	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-down	3 (1)
	FIE1W	\checkmark	\checkmark	Schmitt	6 (1)
	FDE1W	\checkmark	\checkmark	Schmitt 50k Ω Pull-down	6 (1)
Input Buffer with EN(AND)	FN11	\checkmark	\checkmark	-	6 (1)
	FN21	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-down	6 (1)
Input Buffer with EN(OR)	FN13	\checkmark	\checkmark	-	4 (1)
	FN23	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-down	4 (1)
Output Buffer	FO09	\checkmark	\checkmark	3 mA	4 (1)
	FO04	\checkmark	\checkmark	6 mA	4 (1)
	FO01	\checkmark	\checkmark	9 mA	4 (1)
	FO02	\checkmark	\checkmark	12 mA	12 (1)
	FO03	\checkmark	\checkmark	18 mA	12 (1)
	FO06	\checkmark	\checkmark	24 mA	12 (1)
Low-noise Output Buffer	FE09	\checkmark	\checkmark	3 mA	5 (1)
	FE04	\checkmark	\checkmark	6 mA	5 (1)
	FE01	\checkmark	\checkmark	9 mA	5 (1)
	FE02	\checkmark	\checkmark	12 mA	5 (1)
	FE03	\checkmark	\checkmark	18 mA	5 (1)
	FE06	\checkmark	\checkmark	24 mA	5 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
3-State Buffer	B00T	\checkmark	\checkmark	3 mA	7 (1)
	BODT	\checkmark	\checkmark	3mA 50k Ω Pull-down	7 (1)
	BOUT	\checkmark	\checkmark	3mA 50k Ω Pull-up	7 (1)
	BOWT	\checkmark	\checkmark	$3 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	B00E	\checkmark	\checkmark	6 mA	7 (1)
	BODE	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	7 (1)
	boue	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	7 (1)
	BOWE	\checkmark	\checkmark	$6 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	B008	\checkmark	\checkmark	9 mA	7 (1)
	B0D8	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k}$, Pull-down	7 (1)
	B0U8	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	7 (1)
	B0W8	\checkmark	\checkmark	$9 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	B007	\checkmark	\checkmark	12 mA	17 (1)
	B0D7	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	17 (1)
	B0U7	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	17 (1)
	B0W7	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{5k}$, Pull-up	17 (1)
	B009	\checkmark	\checkmark	18 mA	17 (1)
	B0D9	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	17 (1)
	B0U9	\checkmark	\checkmark	18mA 50k Ω Pull-up	17 (1)
	B0W9	\checkmark	\checkmark	18mA 5k Ω Pull-up	17 (1)
	B00H	\checkmark	\checkmark	24 mA	17 (1)
	BODH	\checkmark	\checkmark	24mA 50k Ω Pull-down	17 (1)
	BOUH	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	17 (1)
	BOWH	\checkmark	\checkmark	$24 \mathrm{~mA} \mathrm{5k}$, Pull-up	17 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Low-noise 3-State Buffer	BEOT	\checkmark	\checkmark	3 mA	7 (1)
	BEDT	\checkmark	\checkmark	3mA 50k Ω Pull-down	7 (1)
	BEUT	\checkmark	\checkmark	3mA 50k Ω Pull-up	7 (1)
	BEWT	\checkmark	\checkmark	$3 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	BEOE	\checkmark	\checkmark	6 mA	7 (1)
	BEDE	\checkmark	\checkmark	6mA 50k Ω Pull-down	7 (1)
	BEUE	\checkmark	\checkmark	6mA 50k Ω Pull-up	7 (1)
	BEWE	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	7 (1)
	BE08	\checkmark	\checkmark	9 mA	7 (1)
	BED8	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	7 (1)
	BEU8	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	7 (1)
	BEW8	\checkmark	\checkmark	$9 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	BE07	\checkmark	\checkmark	12 mA	7 (1)
	BED7	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	7 (1)
	BEU7	\checkmark	\checkmark	12mA 50k Ω Pull-up	7 (1)
	BEW7	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	BE09	\checkmark	\checkmark	18 mA	7 (1)
	BED9	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	7 (1)
	BEU9	\checkmark	\checkmark	18mA 50k Ω Pull-up	7 (1)
	BEW9	\checkmark	\checkmark	$18 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
	BEOH	\checkmark	\checkmark	24 mA	7 (1)
	BEDH	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	7 (1)
	BEUH	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	7 (1)
	BEWH	\checkmark	\checkmark	$24 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	7 (1)
N -ch Open drain Buffer	EXT1	\checkmark	\checkmark	9 mA	4 (1)
	EXT3	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	4 (1)
	EXW3	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	4 (1)
	EXT9	\checkmark	\checkmark	12 mA	4 (1)
	EXTB	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	4 (1)
	EXWB	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	4 (1)
	EXT5	\checkmark	\checkmark	18 mA	4 (1)
	EXT7	\checkmark	\checkmark	18mA 50k Ω Pull-up	4 (1)
	EXW7	\checkmark	\checkmark	$18 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	4 (1)
	EXTD	\checkmark	\checkmark	24 mA	4 (1)
	EXTF	\checkmark	\checkmark	24mA 50k Ω Pull-up	4 (1)
	EXWF	\checkmark	\checkmark	24mA 5k Ω Pull-up	4 (1)
N-ch Open drain Buffer with Failsafe	EXO1	\checkmark	\checkmark	9 mA	4 (1)
	EXO9	\checkmark	\checkmark	12 mA	4 (1)
	EXO5	$\sqrt{ }$	\checkmark	18 mA	4 (1)
	EXOD	\checkmark	\checkmark	24 mA	4 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
I/O Buffer	B00U	\checkmark	\checkmark	3 mA	10 (1)
	BODU	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{50k}$ S Pull-down	10 (1)
	BOUU	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{50k}$ P Pull-up	10 (1)
	B0WU	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{5k}$ ¢ Pull-up	10 (1)
	B00C	\checkmark	\checkmark	6 mA	10 (1)
	BODC	\checkmark	\checkmark	6mA 50k Pull-down	10 (1)
	BoUC	\checkmark	\checkmark	6mA 50k Ω Pull-up	10 (1)
	B0WC	\checkmark	\checkmark	6mA 5k Pull-up	10 (1)
	B003	\checkmark	\checkmark	9 mA	10 (1)
	B0D3	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	10 (1)
	B0U3	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	10 (1)
	B0W3	\checkmark	\checkmark	9mA 5k P Pull-up	10 (1)
	B001	\checkmark	\checkmark	12 mA	20 (1)
	B0D1	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	20 (1)
	B0U1	\checkmark	\checkmark	12mA 50k Ω Pull-up	20 (1)
	B0W1	\checkmark	\checkmark	12mA 5k Ω Pull-up	20 (1)
	B005	\checkmark	\checkmark	18 mA	20 (1)
	B0D5	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	20 (1)
	B0U5	\checkmark	\checkmark	18mA 50k Ω Pull-up	20 (1)
	B0W5	\checkmark	\checkmark	18mA 5k Ω Pull-up	20 (1)
	B00F	\checkmark	\checkmark	24 mA	20 (1)
	BODF	\checkmark	\checkmark	24mA 50k Ω Pull-down	20 (1)
	BOUF	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	20 (1)
	B0WF	\checkmark	\checkmark	24mA 5k Pull-up	20 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Low-noise I/O Buffer	BEOU	\checkmark	\checkmark	3 mA	10 (1)
	BEDU	\checkmark	\checkmark	3mA 50k Ω Pull-down	10 (1)
	BEUU	\checkmark	\checkmark	3mA 50k Ω Pull-up	10 (1)
	BEWU	\checkmark	\checkmark		10 (1)
	BEOC	\checkmark	\checkmark	6 mA	10 (1)
	BEDC	\checkmark	\checkmark	6mA 50k Ω Pull-down	10 (1)
	BEUC	\checkmark	\checkmark	6mA 50k Ω Pull-up	10 (1)
	BEWC	\checkmark	\checkmark		10 (1)
	BE03	\checkmark	\checkmark	9 mA	10 (1)
	BED3	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	10 (1)
	BEU3	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	10 (1)
	BEW3	\checkmark	\checkmark	$9 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	10 (1)
	BE01	\checkmark	\checkmark	12 mA	10 (1)
	BED1	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	10 (1)
	BEU1	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	10 (1)
	BEW1	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	10 (1)
	BE05	\checkmark	\checkmark	18 mA	10 (1)
	BED5	\checkmark	\checkmark	18mA 50k Ω Pull-down	10 (1)
	BEU5	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	10 (1)
	BEW5	\checkmark	\checkmark	18mA 5k Ω Pull-up	10 (1)
	BEOF	\checkmark	\checkmark	24 mA	10 (1)
	BEDF	\checkmark	\checkmark	24mA 50k Ω Pull-down	10 (1)
	BEUF	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	10 (1)
	BEWF	\checkmark	\checkmark	24mA 5k Ω Pull-up	10 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Schmitt I/O Buffer	BSIUW	\checkmark	\checkmark	3 mA	13 (1)
	BSDUW	\checkmark	\checkmark	3mA 50k Ω Pull-down	13 (1)
	BSUUW	\checkmark	\checkmark	3mA 50k Ω Pull-up	13 (1)
	BSWUW	\checkmark	\checkmark	$3 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	13 (1)
	BSICW	\checkmark	\checkmark	6 mA	13 (1)
	BSDCW	\checkmark	\checkmark	6mA 50k Ω Pull-down	13 (1)
	BSUCW	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BSWCW	\checkmark	\checkmark		13 (1)
	BSI3W	\checkmark	\checkmark	9 mA	13 (1)
	BSD3W	\checkmark	\checkmark	$9 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BSU3W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BSW3W	\checkmark	\checkmark	$9 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	13 (1)
	BSI1W	\checkmark	\checkmark	12 mA	23 (1)
	BSD1W	\checkmark	\checkmark	12mA 50k Ω Pull-down	23 (1)
	BSU1W	\checkmark	\checkmark	12mA 50k Ω Pull-up	23 (1)
	BSW1W	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSI5W	\checkmark	\checkmark	18 mA	23 (1)
	BSD5W	\checkmark	\checkmark	18mA 50k Ω Pull-down	23 (1)
	BSU5W	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSW5W	\checkmark	\checkmark	$18 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSIFW	\checkmark	\checkmark	24 mA	23 (1)
	BSDFW	\checkmark	\checkmark	24mA 50k Ω Pull-down	23 (1)
	BSUFW	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSWFW	\checkmark	\checkmark	$24 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	23 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Low-noise Schmitt I/O Buffer	BFIUW	\checkmark	\checkmark	3 mA	13 (1)
	BFDUW	\checkmark	\checkmark	3mA 50k Ω Pull-down	13 (1)
	BFUUW	\checkmark	\checkmark	3mA 50ks Pull-up	13 (1)
	BFWUW	\checkmark	\checkmark	$3 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	13 (1)
	BFICW	\checkmark	\checkmark	6 mA	13 (1)
	BFDCW	\checkmark	\checkmark	6mA 50k Ω Pull-down	13 (1)
	BFUCW	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BFWCW	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	13 (1)
	BFI3W	\checkmark	\checkmark	9 mA	13 (1)
	BFD3W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	13 (1)
	BFU3W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BFW3W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{5k}$, Pull-up	13 (1)
	BFI1W	\checkmark	\checkmark	12 mA	13 (1)
	BFD1W	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	13 (1)
	BFU1W	\checkmark	\checkmark	12mA 50k P Pull-up	13 (1)
	BFW1W	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{5k}$, Pull-up	13 (1)
	BFI5W	\checkmark	\checkmark	18 mA	13 (1)
	BFD5W	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BFU5W	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	13 (1)
	BFW5W	\checkmark	\checkmark	$18 \mathrm{~mA} \mathrm{5k}$, Pull-up	13 (1)
	BFIFW	\checkmark	\checkmark	24 mA	13 (1)
	BFDFW	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BFUFW	\checkmark	\checkmark	24 mA 50 k , Pull-up	13 (1)
	BFWFW	\checkmark	\checkmark	$24 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	13 (1)
I/O Buffer with EN(AND)	BN2U	\checkmark	\checkmark	3 mA	13 (1)
	BN4U	\checkmark	\checkmark	3mA 50k Ω Pull-down	13 (1)
	BN2C	\checkmark	\checkmark	6 mA	13 (1)
	BN4C	\checkmark	\checkmark	6mA 50k Ω Pull-down	13 (1)
	BN23	\checkmark	\checkmark	9 mA	13 (1)
	BN43	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	13 (1)
	BN21	\checkmark	\checkmark	12 mA	23 (1)
	BN41	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	23 (1)
	BN25	\checkmark	\checkmark	18 mA	23 (1)
	BN45	\checkmark	\checkmark	18mA 50k Ω Pull-down	23 (1)
	BN2F	\checkmark	\checkmark	24 mA	23 (1)
	BN4F	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	23 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
I/O Buffer with EN(OR)	BN3U	\checkmark	\checkmark	3 mA	11 (1)
	BN5U	\checkmark	\checkmark	3mA 50k Ω Pull-down	11 (1)
	BN3C	\checkmark	\checkmark	6 mA	11 (1)
	BN5C	\checkmark	\checkmark	6mA 50k Ω Pull-down	11 (1)
	BN33	\checkmark	\checkmark	9 mA	11 (1)
	BN53	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	11 (1)
	BN31	\checkmark	\checkmark	12 mA	21 (1)
	BN51	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	21 (1)
	BN35	\checkmark	\checkmark	18 mA	21 (1)
	BN55	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	21 (1)
	BN3F	\checkmark	\checkmark	24 mA	21 (1)
	BN5F	\checkmark	\checkmark	24mA 50k Ω Pull-down	21 (1)

E.1.2 TTL Level

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Input Buffer	FIO2	\checkmark	\checkmark	-	3 (1)
	FID2	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-down	3 (1)
	FIU2	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-up	3 (1)
	FIW2	\checkmark	\checkmark	$5 \mathrm{k} \Omega$ Pull-up	3 (1)
	FIS2W	\checkmark	\checkmark	Schmitt	6 (1)
	FDS2W	\checkmark	\checkmark	Schmitt 50k Pull-down	6 (1)
	FUS2W	\checkmark	\checkmark	Schmitt 50k Ω Pull-up	6 (1)
	FWS2W	\checkmark	\checkmark	Schmitt 5k	6 (1)
Input Buffer with Failsafe	FIA2	\checkmark	\checkmark	-	3 (1)
	FDA2	\checkmark	\checkmark	50k Ω Pull-down	3 (1)
	FIE2W	\checkmark	\checkmark	Schmitt	6 (1)
	FDE2W	\checkmark	\checkmark	Schmitt 50k Pull-down	6 (1)
Input Buffer with EN(AND)	FN12	\checkmark	\checkmark	-	7 (1)
	FN22	\checkmark	\checkmark	$50 \mathrm{k} \Omega$ Pull-down	7 (1)
Input Buffer with EN(OR)	FN14	\checkmark	\checkmark	-	4 (1)
	FN24	\checkmark	\checkmark	50k Ω Pull-down	4 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
I/O Buffer	B00V	\checkmark	\checkmark	3 mA	10 (1)
	B0DV	\checkmark	\checkmark	3mA 50k Ω Pull-down	10 (1)
	BOUV	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	10 (1)
	Bowv	\checkmark	\checkmark		10 (1)
	B00D	\checkmark	\checkmark	6 mA	10 (1)
	BODD	\checkmark	\checkmark	6mA 50k Ω Pull-down	10 (1)
	BOUD	\checkmark	\checkmark	6mA 50k Ω Pull-up	10 (1)
	BOWD	\checkmark	\checkmark	$6 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	10 (1)
	B004	\checkmark	\checkmark	9 mA	10 (1)
	B0D4	\checkmark	\checkmark	$9 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	10 (1)
	B0U4	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	10 (1)
	B0W4	\checkmark	\checkmark	$9 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	10 (1)
	B002	\checkmark	\checkmark	12 mA	20 (1)
	B0D2	\checkmark	\checkmark	12mA 50k P Pull-down	20 (1)
	B0U2	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	20 (1)
	B0W2	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	20 (1)
	B006	\checkmark	\checkmark	18 mA	20 (1)
	B0D6	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	20 (1)
	B0U6	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	20 (1)
	B0W6	\checkmark	\checkmark	18mA 5k Ω Pull-up	20 (1)
	B00G	\checkmark	\checkmark	24 mA	20 (1)
	B0DG	\checkmark	\checkmark	24mA 50k Ω Pull-down	20 (1)
	BOUG	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	20 (1)
	BOWG	\checkmark	\checkmark	$24 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	20 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Low-noise I/O Buffer	BEOV	\checkmark	\checkmark	3 mA	10 (1)
	BEDV	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{50k}$ 部ull-down	10 (1)
	BEUV	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{50k}$ S Pull-up	10 (1)
	BEWV	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{5k}$ P Pull-up	10 (1)
	BEOD	\checkmark	\checkmark	6 mA	10 (1)
	BEDD	\checkmark	\checkmark	6mA 50k Ω Pull-down	10 (1)
	BEUD	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	10 (1)
	BEWD	\checkmark	\checkmark	6mA 5k Pull-up	10 (1)
	BE04	\checkmark	\checkmark	9 mA	10 (1)
	BED4	\checkmark	\checkmark	$9 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	10 (1)
	BEU4	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	10 (1)
	BEW4	\checkmark	\checkmark	9 mA 5 k P Pull-up	10 (1)
	BE02	\checkmark	\checkmark	12 mA	10 (1)
	BED2	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	10 (1)
	BEU2	\checkmark	\checkmark	12mA 50k Ω Pull-up	10 (1)
	BEW2	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	10 (1)
	BE06	\checkmark	\checkmark	18 mA	10 (1)
	BED6	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	10 (1)
	BEU6	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	10 (1)
	BEW6	\checkmark	\checkmark	18mA 5k Ω Pull-up	10 (1)
	BEOG	\checkmark	\checkmark	24 mA	10 (1)
	BEDG	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	10 (1)
	BEUG	\checkmark	\checkmark	24mA 50k Ω Pull-up	10 (1)
	BEWG	\checkmark	\checkmark	24mA 5k Pull-up	10 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Schmitt I/O Buffer	BSIVW	\checkmark	\checkmark	3 mA	13 (1)
	BSDVW	\checkmark	\checkmark	3mA 50k Ω Pull-down	13 (1)
	BSUVW	\checkmark	\checkmark	3mA 50k Ω Pull-up	13 (1)
	BSWVW	\checkmark	\checkmark	3 mA 5 k ת Pull-up	13 (1)
	BSIDW	\checkmark	\checkmark	6 mA	13 (1)
	BSDDW	\checkmark	\checkmark	6mA 50k Ω Pull-down	13 (1)
	BSUDW	\checkmark	\checkmark	6mA 50k Ω Pull-up	13 (1)
	BSWDW	\checkmark	\checkmark	$6 \mathrm{~mA} \mathrm{5k}$, Pull-up	13 (1)
	BSI4W	\checkmark	\checkmark	9 mA	13 (1)
	BSD4W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	13 (1)
	BSU4W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BSW4W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	13 (1)
	BSI2W	\checkmark	\checkmark	12 mA	23 (1)
	BSD2W	\checkmark	\checkmark	12mA 50k Ω Pull-down	23 (1)
	BSU2W	\checkmark	\checkmark	$12 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	23 (1)
	BSW2W	\checkmark	\checkmark	$12 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSI6W	\checkmark	\checkmark	18 mA	23 (1)
	BSD6W	\checkmark	\checkmark	18mA 50k Ω Pull-down	23 (1)
	BSU6W	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSW6W	\checkmark	\checkmark	$18 \mathrm{~mA} \mathrm{5k} \Omega$ Pull-up	23 (1)
	BSIGW	\checkmark	\checkmark	24 mA	23 (1)
	BSDGW	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	23 (1)
	BSUGW	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	23 (1)
	BSWGW	\checkmark	\checkmark	$24 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	23 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Low-noise Schmitt I/O Buffer	BFIVW	\checkmark	\checkmark	3 mA	13 (1)
	BFDVW	\checkmark	\checkmark	3mA 50k Ω Pull-down	13 (1)
	BFUVW	\checkmark	\checkmark	$3 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BFWVW	\checkmark	\checkmark	$3 \mathrm{~mA} 5 \mathrm{k} \Omega$ Pull-up	13 (1)
	BFIDW	\checkmark	\checkmark	6 mA	13 (1)
	BFDDW	\checkmark	\checkmark	6mA 50k Ω Pull-down	13 (1)
	BFUDW	\checkmark	\checkmark	6mA 50k Ω Pull-up	13 (1)
	BFWDW	\checkmark	\checkmark		13 (1)
	BFI4W	\checkmark	\checkmark	9 mA	13 (1)
	BFD4W	\checkmark	\checkmark	$9 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BFU4W	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-up	13 (1)
	BFW4W	\checkmark	\checkmark		13 (1)
	BFI2W	\checkmark	\checkmark	12 mA	13 (1)
	BFD2W	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BFU2W	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-up	13 (1)
	BFW2W	\checkmark	\checkmark	12mA 5k Ω Pull-up	13 (1)
	BFI6W	\checkmark	\checkmark	18 mA	13 (1)
	BFD6W	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BFU6W	\checkmark	\checkmark	18mA 50k Ω Pull-up	13 (1)
	BFW6W	\checkmark	\checkmark	18mA 5k Ω Pull-up	13 (1)
	BFIGW	\checkmark	\checkmark	24 mA	13 (1)
	BFDGW	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	13 (1)
	BFUGW	\checkmark	\checkmark	24 mA 50 k ת Pull-up	13 (1)
	BFWGW	\checkmark	\checkmark	24mA 5k Pull-up	13 (1)
I/O Buffer with EN(AND)	BN2V	\checkmark	\checkmark	3 mA	14 (1)
	BN4V	\checkmark	\checkmark	3mA 50k Ω Pull-down	14 (1)
	BN2D	\checkmark	\checkmark	6 mA	14 (1)
	BN4D	\checkmark	\checkmark	6mA 50k Ω Pull-down	14 (1)
	BN24	\checkmark	\checkmark	9 mA	14 (1)
	BN44	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	14 (1)
	BN22	\checkmark	\checkmark	12 mA	24 (1)
	BN42	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	24 (1)
	BN26	\checkmark	\checkmark	18 mA	24 (1)
	BN46	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	24 (1)
	BN2G	\checkmark	\checkmark	24 mA	24 (1)
	BN4G	\checkmark	\checkmark	$24 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	24 (1)

Function	Block	5.0 V	3.3 V	Description	Cells (1/O)
I/O Buffer with EN(OR)	BN3V	\checkmark	\checkmark	3 mA	11 (1)
	BN5V	\checkmark	\checkmark	3mA 50k Ω Pull-down	11 (1)
	BN3D	\checkmark	\checkmark	6 mA	11 (1)
	BN5D	\checkmark	\checkmark	6mA 50k Ω Pull-down	11 (1)
	BN34	\checkmark	\checkmark	9 mA	11 (1)
	BN54	\checkmark	\checkmark	$9 \mathrm{~mA} \mathrm{50k} \Omega$ Pull-down	11 (1)
	BN32	\checkmark	\checkmark	12 mA	21 (1)
	BN52	\checkmark	\checkmark	$12 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	21 (1)
	BN36	\checkmark	\checkmark	18 mA	21 (1)
	BN56	\checkmark	\checkmark	$18 \mathrm{~mA} 50 \mathrm{k} \Omega$ Pull-down	21 (1)
	BN3G	\checkmark	\checkmark	24 mA	21 (1)
	BN5G	\checkmark	\checkmark	24mA 50k Ω Pull-down	21 (1)

E.1.3 Oscillator

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Oscillator Input Buffer	OSI1	\checkmark	\checkmark	-	$0(1)$
Oscillator Input Buffer for Enable	OSI2	\checkmark	\checkmark	-	$0(1)$
Oscillator Input Buffer for OSO9	OSI4	\checkmark	\checkmark	-	$0(1)$
Oscillator Output Buffer (Internal Feedback Resistor)	OSO1	\checkmark	\checkmark	-	$0(1)$
Oscillator Output Buffer (for Enable Type)	OSO7	\checkmark	\checkmark	-	$0(1)$
Oscillator Output Buffer (External Feedback Resistor)	OSO9	\checkmark	\checkmark	-	$0(1)$

E. 2 Function Block

E.2.1 Level Generator

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
H,L Level Generator	F091	\checkmark	\vee	-	$1(-)$

E.2.2 Inverter, Buffer, CTS Driver, Delay Gate

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Inverter	L101	\checkmark	\checkmark	Single Out, Low Power	1 (-)
	F101	\checkmark	\checkmark	Single Out	1 (-)
	F102	\checkmark	\checkmark	Single Out, x2-drive	2 (-)
	F143	\checkmark	\checkmark	Single Out, x3-drive	3 (-)
	F144	\checkmark	\checkmark	Single Out, x4-drive	4 (-)
	F145	\checkmark	\checkmark	Single Out, x5-drive	5 (-)
	F146	\checkmark	\checkmark	Single Out, x6-drive	6 (-)
	F148	\checkmark	\checkmark	Single Out, x8-drive	12 (-)
Buffer	L111	\checkmark	\checkmark	Single Out, Low Power	1 (-)
	F111	\checkmark	\checkmark	Single Out	2 (-)
	F112	\checkmark	\checkmark	Single Out, x2-drive	3 (-)
	F153	\checkmark	\checkmark	Single Out, $\times 3$-drive	4 (-)
	F154	\checkmark	\checkmark	Single Out, x4-drive	5 (-)
	F158	\checkmark	\checkmark	Single Out, x8-drive	11 (-)
CTS Driver (Inverter Type)	FC42	\checkmark	\checkmark	Single type	132 (-)
	FC82	\checkmark	\checkmark	Single type, x2-drive	396 (-)
	FC44	\checkmark	\checkmark	Double type	340 (-)
	FC84	\checkmark	\checkmark	Double type, x2-drive	1020 (-)
Delay Gate	F131	\checkmark	\checkmark	-	6 (-)
	F132	\checkmark	\checkmark	-	10 (-)

E.2.3 OR(NOR)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
2-Input NOR	L202	\checkmark	\checkmark	Low Power	1 (-)
	F202	\checkmark	\checkmark	-	2 (-)
	F222	\checkmark	\checkmark	x2-drive	4 (-)
	F282	\checkmark	\checkmark	x4-drive	6 (-)
3-Input NOR	L203	\checkmark		Low Power	2 (-)
	F203	\checkmark	\checkmark	-	3 (-)
	F223	\checkmark	\checkmark	x2-drive	6 (-)
4-Input NOR	L204	\checkmark		Low Power	2 (-)
	F204	\checkmark	\checkmark	-	4 (-)
5-Input NOR	L205	\checkmark	\checkmark	Low Power	4 (-)
	F205	\checkmark	\checkmark	-	5 (-)
	F225	\checkmark	\checkmark	x2-drive	6 (-)
6-Input NOR	F206	\checkmark	\checkmark	-	5 (-)
	F226	\checkmark	\checkmark	x2-drive	6 (-)
8-Input NOR	L208	\checkmark	\checkmark	Low Power	7 (-)
	F208	\checkmark	\checkmark	-	7 (-)
	F228	\checkmark	\checkmark	x2-drive	8 (-)
2-Input OR	L212	\checkmark	\checkmark	Low Power	2 (-)
	F212	\checkmark	\checkmark	-	2 (-)
	F232	\checkmark	\checkmark	x2-drive	3 (-)
	F252	\checkmark	\checkmark	x4-drive	6 (-)
3-Input OR	L213	\checkmark	\checkmark	Low Power	2 (-)
	F213	\checkmark	\checkmark	-	3 (-)
	F233	\checkmark	\checkmark	x2-drive	4 (-)
4-Input OR	L214	\checkmark	\checkmark	Low Power	3 (-)
	F214	\checkmark	\checkmark	-	3 (-)
	F234	\checkmark	\checkmark	x2-drive	4 (-)
5-Input OR	L215	\checkmark	\checkmark	Low Power	4 (-)
	F215	\checkmark	\checkmark	-	5 (-)
	F235	\checkmark	\checkmark	x2-drive	7 (-)
6-Input OR	L216	\checkmark	\checkmark	Low Power	4 (-)
	F216	\checkmark	\checkmark	-	5 (-)
	F236	\checkmark	\checkmark	x2-drive	7 (-)
8-Input OR	L218	\checkmark	\checkmark	Low Power	6 (-)
	F218	\checkmark	\checkmark	-	8 (-)
	F238	\checkmark	\checkmark	x2-drive	9 (-)

E.2.4 AND(NAND)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
2-Input NAND	L302	\checkmark	\checkmark	Low Power	1 (-)
	F302	\checkmark	\checkmark	-	2 (-)
	F322	\checkmark	\checkmark	x2-drive	4 (-)
	F382	\checkmark	\checkmark	x4-drive	6 (-)
3-Input NAND	L303	\checkmark	\checkmark	Low Power	2 (-)
	F303	\checkmark	\checkmark	-	3 (-)
	F323	\checkmark	\checkmark	x2-drive	6 (-)
4-Input NAND	L304	\checkmark	\checkmark	Low Power	2 (-)
	F304	\checkmark	\checkmark	-	4 (-)
	F324	\checkmark	\checkmark	x2-drive	8 (-)
5-Input NAND	F305	\checkmark	\checkmark	-	5 (-)
	F325	\checkmark	\checkmark	x2-drive	6 (-)
6-Input NAND	F306	\checkmark	\checkmark	-	5 (-)
	F326	\checkmark	\checkmark	x2-drive	6 (-)
8-Input NAND	F308	\checkmark	\checkmark	-	6 (-)
	F328	\checkmark	\checkmark	x2-drive	7 (-)
2-Input AND	L312	\checkmark	\checkmark	Low Power	2 (-)
	F312	\checkmark	\checkmark	-	2 (-)
	F332	\checkmark	\checkmark	x2-drive	3 (-)
	F352	\checkmark	\checkmark	x4-drive	6 (-)
3-Input AND	L313	\checkmark	\checkmark	Low Power	2 (-)
	F313	\checkmark	\checkmark	-	3 (-)
	F333	\checkmark	\checkmark	x2-drive	4 (-)
4-Input AND	L314	\checkmark	\checkmark	Low Power	3 (-)
	F314	\checkmark	\checkmark	-	3 (-)
	F334	\checkmark	\checkmark	x2-drive	4 (-)
5-Input AND	L315	\checkmark	\checkmark	Low Power	4 (-)
	F315	\checkmark	\checkmark	-	5 (-)
	F335	\checkmark	\checkmark	x2-drive	7 (-)
6-Input AND	L316	\checkmark	\checkmark	Low Power	4 (-)
	F316	\checkmark	\checkmark	-	5 (-)
	F336	\checkmark	\checkmark	x2-drive	7 (-)
8-Input AND	L318	\checkmark	\checkmark	Low Power	5 (-)
	F318	\checkmark	\checkmark	-	6 (-)
	F338	\checkmark	\checkmark	x2-drive	8 (-)

E.2.5 AND-NOR

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
1-2-Input AND-NOR	L421	\checkmark	\checkmark	Low Power	2 (-)
	F421	\checkmark	\checkmark	-	3 (-)
1-1-2-Input AND-NOR	L422	\checkmark		Low Power	2 (-)
	F422	\checkmark	\checkmark	-	4 (-)
1-3-Input AND-NOR	L423	\checkmark	\checkmark	Low Power	2 (-)
	F423	\checkmark	\checkmark	-	4 (-)
2-2-Input AND-NOR	L424	\checkmark	\checkmark	Low Power	2 (-)
	F424	\checkmark	\checkmark	-	4 (-)
2-2-2-Input AND-NOR	L425	\checkmark		Low Power	3 (-)
	F425	\checkmark		-	6 (-)
2-3-Input AND-NOR	L427	\checkmark		Low Power	3 (-)
	F427	\checkmark	\checkmark	-	5 (-)
1-2-2-Input AND-NOR	L428	\checkmark		Low Power	3 (-)
	F428	\checkmark	\checkmark	-	5 (-)
2-2-2-2-Input AND-NOR	L429	\checkmark	\checkmark	Low Power	6 (-)
	F429	\checkmark	\checkmark	-	6 (-)
1-4-Input AND-NOR	L440	\checkmark		Low Power	3 (-)
	F440	\checkmark	\checkmark	-	5 (-)
1-5-Input AND-NOR	L441	\checkmark	\checkmark	Low Power	5 (-)
	F441	\checkmark	\checkmark	-	7 (-)
4-4-4-Input AND-NOR	L444	\checkmark	\checkmark	Low Power	8 (-)
	F444	\checkmark	\checkmark	-	8 (-)
1-1-1-2-Input AND-NOR	L446	\checkmark	\checkmark	Low Power	4 (-)
	F446	\checkmark	\checkmark	-	5 (-)
1-1-1-3-Input AND-NOR	L447	\checkmark	\checkmark	Low Power	5 (-)
	F447	\checkmark	\checkmark	-	5 (-)
1-1-2-2-Input AND-NOR	L448	\checkmark	\checkmark	Low Power	5 (-)
	F448	\checkmark	\checkmark	-	5 (-)
3-3-3-3-Input AND-NOR	F449	\checkmark	\checkmark	-	8 (-)
3-3-3-Input AND-NOR	L460	\checkmark	\checkmark	Low Power	6 (-)
	F460	\checkmark	\checkmark	-	7 (-)
1-2-3-Input AND-NOR	F462	\checkmark		-	6 (-)
1-1-3-Input AND-NOR	L463	\checkmark		Low Power	3 (-)
	F463	\checkmark		-	5 (-)
1-1-4-Input AND-NOR	L464	\checkmark	\checkmark	Low Power	5 (-)
	F464	\checkmark	\checkmark	-	5 (-)
1-1-1-1-2-Input AND-NOR	F465	\checkmark	\checkmark	-	5 (-)
4-4-4-4-Input AND-NOR	F466	\checkmark	\checkmark	-	10 (-)

E.2.6 OR-NAND

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
1-4-Input OR-NAND	L430	\checkmark	\checkmark	Low Power	4 (-)
	F430	\checkmark	\checkmark	-	5 (-)
1-2-Input OR-NAND	L431	\checkmark	\checkmark	Low Power	2 (-)
	F431	\checkmark	\checkmark	-	3 (-)
1-1-2-Input OR-NAND	L432	\checkmark	\checkmark	Low Power	2 (-)
	F432	\checkmark	\checkmark	-	4 (-)
1-3-Input OR-NAND	L433	\checkmark		Low Power	2 (-)
	F433	\checkmark	\checkmark	-	4 (-)
2-2-Input OR-NAND	L434	\checkmark		Low Power	2 (-)
	F434	\checkmark	\checkmark	-	4 (-)
2-3-Input OR-NAND	F435	\checkmark		-	5 (-)
3-3-Input OR-NAND	L436	\checkmark		Low Power	3 (-)
	F436	\checkmark		-	6 (-)
1-2-2-Input OR-NAND	F437	\checkmark		-	5 (-)
2-2-2-Input OR-NAND	F438	\checkmark		-	6 (-)
1-5-Input OR-NAND	L439	\checkmark	\checkmark	Low Power	5 (-)
	F439	\checkmark	\checkmark	-	6 (-)
2-4-Input OR-NAND	L450	\checkmark	\checkmark	Low Power	5 (-)
	F450	\checkmark	\checkmark	-	6 (-)
4-4-Input OR-NAND	L451	\checkmark	\checkmark	Low Power	7 (-)
	F451	\checkmark	\checkmark	-	8 (-)
1-1-3-Input OR-NAND	L452	\checkmark	\checkmark	Low Power	4 (-)
	F452	\checkmark	\checkmark	-	5 (-)
1-1-4-Input OR-NAND	L453	\checkmark	\checkmark	Low Power	5 (-)
	F453	\checkmark	\checkmark	-	6 (-)
4-4-4-Input OR-NAND	F457	\checkmark	\checkmark	-	10 (-)
1-1-1-2-Input OR-NAND	L458	\checkmark		Low Power	3 (-)
	F458	\checkmark	\checkmark	-	5 (-)
1-1-1-3-Input OR-NAND	L459	\checkmark	\checkmark	Low Power	5 (-)
	F459	\checkmark	\checkmark	-	5 (-)
1-1-1-1-2-Input OR-NAND	F490	\checkmark	\checkmark	-	5 (-)
1-2-3-Input OR-NAND	L491	\checkmark	\checkmark	Low Power	5 (-)
	F491	\checkmark	\checkmark	-	5 (-)
3-3-3-Input OR-NAND	L493	\checkmark	\checkmark	Low Power	6 (-)
	F493	\checkmark	\checkmark	-	7 (-)
1-1-2-2-Input OR-NAND	F495	\checkmark		-	6 (-)
3-3-3-3-Input OR-NAND	F496	\checkmark	\checkmark	-	8 (-)
4-4-4-4-Input OR-NAND	F498	\checkmark	\checkmark	-	14 (-)

E.2.7 Exclusive OR, Exclusive NOR

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
2-Input Exclusive OR	L511	\checkmark	\checkmark	Low Power	3 (-)
	F511	\checkmark	\checkmark	-	4 (-)
3-Input Exclusive OR	L516	\checkmark	\checkmark	Low Power	6 (-)
	F516	\checkmark	\checkmark	-	7 (-)
2-Input Exclusive NOR	L512	\checkmark	\checkmark	Low Power	3 (-)
	F512	\checkmark	\checkmark	-	4 (-)
3-Input Exclusive NOR	L517	\checkmark	\checkmark	Low Power	7 (-)
	F517	\checkmark	\checkmark	-	7 (-)

E.2.8 Adder, 3-State Buffer, Decoder, Multiplexer, Generator

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
1-Bit Full Adder	F521	\checkmark	\checkmark	-	9 (-)
4-Bit Full Adder	F523	\checkmark	\checkmark	-	32 (-)
4-Bit Look Ahead Carry Generator	F526	\checkmark	\checkmark	-	34 (-)
4-Bit Carry Look Ahead Adder	F527	\checkmark	\checkmark	-	69 (-)
3-State Buffer	L531	\checkmark	\checkmark	with EN, Low Power	4 (-)
	F531	\checkmark	\checkmark	with EN	5 (-)
	F533	\checkmark	\checkmark	with EN, x2-drive	7 (-)
	F53F	\checkmark	\checkmark	with EN, x4-drive	11 (-)
	L532	\checkmark	\checkmark	with ENB, Low Power	4 (-)
	F532	\checkmark	\checkmark	with ENB	5 (-)
	F534	\checkmark	\checkmark	with ENB, x2-drive	7 (-)
	F53G	\checkmark	\checkmark	with ENB, x4-drive	11 (-)
	F541	\checkmark	\checkmark	Inverter with EN	6 (-)
	F543	\checkmark	\checkmark	Inverter with EN, x2-drive	8 (-)
	F54F	\checkmark	\checkmark	Inverter with EN, x4-drive	12 (-)
	F542	\checkmark	\checkmark	Inverter with ENB	6 (-)
	F544	\checkmark	\checkmark	Inverter with ENB, x2-drive	8 (-)
	F54G	\checkmark	\checkmark	Inverter with ENB, x4-drive	12 (-)
2 to 4 Decoder	L560	\checkmark	\checkmark	Positive Out, Low Power	6 (-)
	F560	\checkmark	\checkmark	Positive Out	10 (-)
	L561	\checkmark	\checkmark	Negative Out, Low Power	6 (-)
	F561	\checkmark	\checkmark	Negative Out	10 (-)
2 to 1 Multiplexer (Positive Out)	L565	\checkmark	\checkmark	Low Power	3 (-)
	F565	\checkmark	\checkmark	-	4 (-)
	L571	\checkmark	\checkmark	with ENB, Low Power	4 (-)
	F571	\checkmark	\checkmark	with ENB	6 (-)
4 to 1 Multiplexer (Positive Out)	F564	\checkmark	\checkmark	-	8 (-)
	F570	\checkmark	\checkmark	with ENB	10 (-)
8 to 1 Multiplexer (Positive Out)	F563	\checkmark	\checkmark	-	18 (-)
	F569	\checkmark	\checkmark	with ENB	18 (-)
Quad 2 to 1 Multiplexer (Negative Out)	L572	\checkmark	\checkmark	with ENB, Low Power	15 (-)
	F572	\checkmark	\checkmark	with ENB	17 (-)
8-Bit Odd Parity Generator	F581	\checkmark	\checkmark	-	19 (-)
8-Bit Even Parity Generator	F582	\checkmark	\checkmark	-	19 (-)

E.2.9 RS-Latch, RS-F/F

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
RS-Latch	F595	\checkmark	\vee	-	$5(-)$
RS-F/F with R,S	F596	\checkmark	\vee	-	$11(-)$

E.2.10 D-Latch

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
D-Latch	F601	\checkmark	\checkmark	-	6 (-)
	L601	\checkmark	\checkmark	Q Out, Low Power	4 (-)
	F601NQ	\checkmark	\checkmark	Q Out	5 (-)
	F601NB	\checkmark	\checkmark	QB Out	5 (-)
D-Latch, High Speed	F6R1	\checkmark	\checkmark	-	6 (-)
D-Latch with R	F602	\checkmark	\checkmark	-	6 (-)
	L602	\checkmark	\checkmark	Q Out, Low Power	5 (-)
	F602NQ	\checkmark	\checkmark	Q Out	6 (-)
	F602NB	\checkmark	\checkmark	QB Out	5 (-)
D-Latch with R, High Speed	F6R2	\checkmark	\checkmark	-	7 (-)
D-Latch with RB	F603	\checkmark	\checkmark	-	7 (-)
	L603	\checkmark	\checkmark	Q Out, Low Power	5 (-)
	F603NQ	\checkmark	\checkmark	Q Out	5 (-)
	F603NB	\checkmark	\checkmark	QB Out	6 (-)
D-Latch with RB, High Speed	F6R5	\checkmark	\checkmark	-	6 (-)
D-Latch with SB	F60K	\checkmark	\checkmark	-	7 (-)
	F60KNQ	\checkmark	\checkmark	Q Out	6 (-)
	F60KNB	\checkmark	\checkmark	QB Out	5 (-)
D-Latch with RB, SB	F60J	\checkmark	\checkmark	-	7 (-)
	F60JNQ	\checkmark	\checkmark	Q Out	6 (-)
	F60JNB	\checkmark	\checkmark	QB Out	6 (-)
D-Latch (GB)	F604	$\sqrt{ }$	\checkmark	-	6 (-)
	L604	\checkmark	\checkmark	Q Out, Low Power	4 (-)
	F604NQ	\checkmark	\checkmark	Q Out	5 (-)
	F604NB	\checkmark	\checkmark	QB Out	5 (-)
D-Latch (GB), High Speed	F6R8	\checkmark	\checkmark	-	6 (-)
D-Latch (GB) with RB	F605	\checkmark	\checkmark	-	7 (-)
	L605	\checkmark	\checkmark	Q Out, Low Power	5 (-)
	F605NQ	\checkmark	\checkmark	Q Out	5 (-)
	F605NB	\checkmark	\checkmark	QB Out	6 (-)
D-Latch (GB) with RB, High Speed	F6R9	\checkmark	\checkmark	-	6 (-)

E.2.11 D-F/F

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
D-F/F	F641	\checkmark	\checkmark	-	8 (-)
	L641	\checkmark	\checkmark	Q Out, Low Power	6 (-)
	F641NQ	\checkmark	\checkmark	Q Out	7 (-)
	F641NB	\checkmark	\checkmark	QB Out	7 (-)
D-F/F with R	F642	\checkmark	\checkmark	-	9 (-)
	F642NQ	\checkmark	\checkmark	Q Out	8 (-)
	F642NB	\checkmark	\checkmark	QB Out	8 (-)
D-F/F with S	F643	\checkmark	\checkmark	-	9 (-)
	F643NQ	\checkmark	\checkmark	Q Out	8 (-)
	F643NB	\checkmark	\checkmark	QB Out	8 (-)
D-F/F with R,S	F644	\checkmark	\checkmark	-	10 (-)
	L644	\checkmark	\checkmark	Q Out, Low Power	8 (-)
	F644NQ	\checkmark	\checkmark	Q Out	9 (-)
	F644NB	\checkmark	\checkmark	QB Out	9 (-)
D-F/F with RB	F615	\checkmark	\checkmark	-	9 (-)
	L645	\checkmark	\checkmark	Q Out, Low Power	7 (-)
	F615NQ	\checkmark	\checkmark	Q Out	8 (-)
	F615NB	\checkmark	\checkmark	QB Out	8 (-)
D-F/F with SB	F616	\checkmark	\checkmark	-	9 (-)
	F616NQ	\checkmark	\checkmark	Q Out	8 (-)
	F616NB	\checkmark	\checkmark	QB Out	8 (-)
D-F/F with RB, SB	F647	\checkmark	\checkmark	-	10 (-)
	L647	\checkmark	\checkmark	Q Out, Low Power	8 (-)
	F647NQ	\checkmark	\checkmark	Q Out	9 (-)
	F647NB	\checkmark	\checkmark	QB Out	9 (-)
D-F/F (CB)	F661	\checkmark	\checkmark	-	8 (-)
	L661	\checkmark	\checkmark	Q Out, Low Power	6 (-)
	F661NQ	\checkmark	\checkmark	Q Out	7 (-)
	F661NB	\checkmark	\checkmark	QB Out	7 (-)
D-F/F (CB) with RB	F665	\checkmark	\checkmark	-	9 (-)
	F665NQ	\checkmark	\checkmark	Q Out	8 (-)
	F665NB	\checkmark	\checkmark	QB Out	8 (-)
D-F/F (CB) with SB	F666	\checkmark	\checkmark	-	9 (-)
	F666NQ	\checkmark	\checkmark	Q Out	8 (-)
	F666NB	\checkmark	\checkmark	QB Out	8 (-)
D-F/F (CB) with RB, SB	F667	\checkmark	\checkmark	-	10 (-)
	L667	\checkmark	\checkmark	Q Out, Low Power	8 (-)
	F667NQ	\checkmark	\checkmark	Q Out	9 (-)
	F667NB	\checkmark	\checkmark	QB Out	9 (-)
D-F/F with 2 to 1 Selector	F641S	\checkmark	\checkmark	-	10 (-)
	F641SQ	\checkmark	\checkmark	Q Out	9 (-)
	F641SB	\checkmark	\checkmark	QB Out	9 (-)

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
D-F/F with R,2 to 1 Selector	F642S	\checkmark	\checkmark	-	11 (-)
	F642SQ	\checkmark	\checkmark	Q Out	10 (-)
	F642SB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F with S, 2 to 1 Selector	F643S	\checkmark	\checkmark	-	11 (-)
	F643SQ	\checkmark	\checkmark	Q Out	10 (-)
	F643SB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F with R,S,2 to 1 Selector	F644S	\checkmark	\checkmark	-	12 (-)
	F644SQ	\checkmark	\checkmark	Q Out	11 (-)
	F644SB	\checkmark	\checkmark	QB Out	11 (-)
D-F/F with RB, 2 to 1 Selector	F615S	\checkmark	\checkmark	-	11 (-)
	F615SQ	\checkmark	\checkmark	Q Out	10 (-)
	F615SB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F with SB, 2 to 1 Selector	F616S	\checkmark	\checkmark	-	11 (-)
	F616SQ	\checkmark	\checkmark	Q Out	10 (-)
	F616SB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F with RB, SB, 2 to 1 Selector	F647S	\checkmark	\checkmark	-	12 (-)
	F647SQ	\checkmark	\checkmark	Q Out	11 (-)
	F647SB	\checkmark	\checkmark	QB Out	11 (-)
D-F/F (CB) with 2 to 1 Selector	F661S	\checkmark	\checkmark	-	10 (-)
	F661SQ	\checkmark	\checkmark	Q Out	9 (-)
	F661SB	\checkmark	\checkmark	QB Out	9 (-)
D-F/F (CB) with RB, 2 to 1 Selector	F665S	\checkmark	\checkmark	-	11 (-)
	F665SQ	\checkmark	\checkmark	Q Out	10 (-)
	F665SB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F (CB) with SB, 2 to 1 Selector	F666S	\checkmark	\checkmark	-	11 (-)
	F666SQ	\checkmark	\checkmark	Q Out	10 (-)
	F666SB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F (CB) with RB, SB, 2 to 1 Selector	F667S	\checkmark	\checkmark	-	12 (-)
	F667SQ	\checkmark	\checkmark	Q Out	11 (-)
	F667SB	\checkmark	\checkmark	QB Out	11 (-)
D-F/F with Hold	F641H	\checkmark	\checkmark	-	10 (-)
	F641HQ	\checkmark	\checkmark	Q Out	9 (-)
	F641HB	\checkmark	\checkmark	QB Out	9 (-)
D-F/F with RB,Hold	F615H	\checkmark	\checkmark	-	11 (-)
	F615HQ	\checkmark	\checkmark	Q Out	10 (-)
	F615HB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F with SB,Hold	F616H	\checkmark	\checkmark	-	11 (-)
	F616HQ	\checkmark	\checkmark	Q Out	10 (-)
	F616HB	\checkmark	\checkmark	QB Out	10 (-)
D-F/F with RB, SB,Hold	F647H	\checkmark	\checkmark	-	12 (-)
	F647HQ	\checkmark	\checkmark	Q Out	11 (-)
	F647HB	\checkmark	\checkmark	QB Out	11 (-)
D-F/F (CB) with 2 to 1 Selector(2 CTRL),RB	F673	\checkmark	\checkmark	-	11 (-)
D-F/F (CB) with Hold, 2 to 1 Selector(2 CTRL),RB	F674	\checkmark	\checkmark	-	12 (-)

E.2.12 T-F/F, JK-F/F

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
T-F/F with R, ${ }^{\text {S }}$	F744	\checkmark	\checkmark	-	9 (-)
	L744	\checkmark	\checkmark	Q Out, Low Power	7 (-)
	F744NQ	\checkmark	\checkmark	Q Out	8 (-)
T-F/F with RB	F745	\checkmark	\checkmark	-	8 (-)
	F745NQ	\checkmark	\checkmark	Q Out	7 (-)
T-F/F with RB, SB	F747	\checkmark	\checkmark	-	9 (-)
	L747	\checkmark	\checkmark	Q Out, Low Power	7 (-)
	F747NQ	\checkmark	\checkmark	Q Out	8 (-)
T-F/F with Data-Hold R,S	F791	\checkmark	\checkmark	-	12 (-)
T-F/F (TB) with RB	F765	\checkmark	\checkmark	-	8 (-)
	F765NQ	\checkmark	\checkmark	Q Out	7 (-)
T-F/F (TB) with RB, SB	F767	\checkmark	\checkmark	-	9 (-)
	L767	\checkmark	\checkmark	Q Out, Low Power	7 (-)
	F767NQ	\checkmark	\checkmark	Q Out	8 (-)
T-F/F (TB) with Data-Hold RB, SB	F792	\checkmark	\checkmark	-	12 (-)
JK-F/F	F771	\checkmark	\checkmark	-	10 (-)
	F771NQ	\checkmark	\checkmark	Q Out	$9(-)$
	F771NB	\checkmark	\checkmark	QB Out	9 (-)
JK-F/F, High Speed	F7D1	\checkmark	\checkmark	-	10 (-)
JK-F/F with R, S	F774	\checkmark	\checkmark	-	12 (-)
	F774NQ	\checkmark	\checkmark	Q Out	11 (-)
	F774NB	\checkmark	\checkmark	QB Out	11 (-)
JK-F/F with RB	F775	\checkmark	\checkmark	-	11 (-)
	F775NQ	\checkmark	\checkmark	Q Out	10 (-)
	F775NB	\checkmark	\checkmark	QB Out	10 (-)
JK-F/F with SB	F776	\checkmark	\checkmark	-	11 (-)
	F776NQ	\checkmark	\checkmark	Q Out	10 (-)
	F776NB	\checkmark	\checkmark	QB Out	10 (-)
JK-F/F with RB, SB	F777	\checkmark	\checkmark	-	12 (-)
	F777NQ	\checkmark	\checkmark	Q Out	11 (-)
	F777NB	\checkmark	\checkmark	QB Out	11 (-)
JK-F/F (CB)	F781	\checkmark	\checkmark	-	10 (-)
	F781NQ	\checkmark	\checkmark	Q Out	$9(-)$
	F781NB	\checkmark	\checkmark	QB Out	9 (-)
JK-F/F (CB), High Speed	F7E1	\checkmark	\checkmark	-	10 (-)
JK-F/F (CB) with RB, SB	F787	\checkmark	\checkmark	-	12 (-)
	F787NQ	\checkmark	\checkmark	Q Out	11 (-)
	F787NB	\checkmark	\checkmark	QB Out	11 (-)

E. 3 Scan Path Block

E.3.1 Standard Type

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Scan D-F/F with R,S,2 to 1 Selector	S000	\checkmark	\checkmark	-	12 (-)
Scan D-F/F with 2 to 1 Selector	S002	\checkmark	\checkmark	-	10 (-)
Scan D-F/F with 2 to 1 Selector, High Speed	S003	\checkmark	\checkmark	-	11 (-)
Scan D-F/F with R,S,Hold, 2 to 1 Selector	S050	\checkmark	\checkmark	-	16 (-)
Scan D-F/F with Hold,2 to 1 Selector	S052	\checkmark	\checkmark	-	14 (-)
Scan JK-F/F with R,S,D-F/F Function	S100	\checkmark	\checkmark	-	14 (-)
Scan JK-F/F with D-F/F Function	S102	\checkmark	\checkmark	-	12 (-)
Scan JK-F/F with R,S,Hold, D-F/F Function	S150	\checkmark	\checkmark	-	18 (-)
Scan JK-F/F with Hold, D-F/F Function	S152	\checkmark	\checkmark	-	16 (-)
Scan D-Latch with R,D-F/F Function	S201	\checkmark	\checkmark	-	13 (-)
Scan D-Latch with D-F/F Function	S202	\checkmark	\checkmark	-	12 (-)
Scan D-Latch with D-F/F Function, High Speed	S204	\checkmark	\checkmark	-	12 (-)
Scan D-Latch with R, Special Function, R	S301	\checkmark	\checkmark	-	8 (-)
Scan D-Latch with Special Function	S302	\checkmark	\checkmark	-	7 (-)
Scan D-Latch with Special Function, High Speed	S303	\checkmark	\checkmark	-	7 (-)

E.3.2 NEC Scan

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
NEC Scan D-Latch	SE601	\checkmark	\checkmark	-	13 (-)
NEC Scan D-Latch with R	SE602	\checkmark	\checkmark	-	14 (-)
NEC Scan D-Latch with RB	SE603	\checkmark	\checkmark	-	14 (-)
NEC Scan D-Latch(GB)	SE604	\checkmark	\checkmark	-	13 (-)
NEC Scan D-Latch(GB) with RB	SE605	\checkmark	\checkmark	-	14 (-)
NEC Scan D-F/F	SE611	\checkmark	\checkmark	-	11 (-)
NEC Scan D-F/F with R,S	SE614	\checkmark	\checkmark	-	13 (-)
NEC Scan D-F/F with RB	SE615	\checkmark	\checkmark	-	12 (-)
NEC Scan D-F/F with SB	SE616	\checkmark	\checkmark	-	12 (-)
NEC Scan D-F/F with RB, SB	SE617	\checkmark	\checkmark	-	13 (-)
NEC Scan D-F/F (CB)	SE631	\checkmark	\checkmark	-	11 (-)
NEC Scan D-F/F (CB) with RB, SB	SE637	\checkmark	\checkmark	-	13 (-)

E.3.3 Scan Controller

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
Clock Distributor	SCD1	\checkmark	\checkmark	-	8 (-)
Clock Distributor with Test (Positive Clock)	SCDC	\checkmark	\checkmark	-	2 (-)
Clock Distributor with Test (Negative Clock)	SCDD	\checkmark	\checkmark	-	2 (-)
I/F Control (AMC) with EN	SFEH	\checkmark	\checkmark	-	3 (-)
I/F Control (AMC) with ENB	SFEL	\checkmark	\checkmark	-	2 (-)
I/F Control (SMC) with EN	SOEH	\checkmark	\checkmark	-	3 (-)
I/F Control (SMC) with ENB	SOEL	\checkmark	\checkmark	-	2 (-)
Megamacro Skip	SMS1	\checkmark	\checkmark	-	4 (-)
Set/Reset Control	SRH1	\checkmark	\checkmark	-	2 (-)
Set-B/Reset-B Control	SRL1	\checkmark	\checkmark	-	2 (-)
Loop Cut	SRPD	\checkmark	\checkmark	-	12 (-)
Clock Generator	SCKG	\checkmark	\checkmark	-	16 (-)
Common Input	SCI1	\checkmark	\checkmark	-	2 (-)
Common Output	SCO1	\checkmark	\checkmark	-	4 (-)
GND	SGND	\checkmark	\checkmark	-	2 (-)

E. 4 Boundary Scan Block

E.4.1 TAP Macro

Function	Block	5.0 V	3.3 V	Description	Cells (I/O)
BScan TAP Macro	SBCJ	$\sqrt{ }$	$\sqrt{ }$	-	$262(-)$
BScan TAP Macro with NEC Scan	SBCL	$\sqrt{ }$	$\sqrt{ }$	-	$315(-)$

E.4.2 Level Generator

Function	Block	5.0 V	3.3 V		Description
BScan Level Generator (CLANP)	SBZ1	\checkmark	\checkmark	-	

E.4.3 Data Register

Function	Block	5.0 V	3.3 V		Description
Cells (I/O)					
BScan Data Register for Input	SVRN12	\checkmark	\checkmark	-	$12(-)$
BScan Data Register for Output	SVRN22	\checkmark	\checkmark	-	$24(-)$
BScan Data Register for 3-state	SVRN32	\checkmark	\vee	-	$50(-)$
BScan Data Register for Bid	SVRNB2	\checkmark	\checkmark	-	$57(-)$

E.4.4 D-latch, Selector, Shift Register

Function	Block	5.0 V	3.3 V		Description
BScan D-Latch with SB Q Out, Low Power	L606	\checkmark	\checkmark	-	Cells (I/O)
BScan Selector	SBD1	\checkmark	\checkmark	-	$5(-)$
BScan Shift Register	SBR1	\checkmark	\checkmark	-	$4(-)$
BScan Data Selector for Output	SVSNA2	\checkmark	\checkmark	-	$8(-)$
BScan Data Selector for Bid	SVSNB2	\checkmark	\checkmark	-	$7(-)$
BScan Data Enable Selector for 3-state	SVSNC2	\checkmark	\checkmark	-	$7(-)$
BScan Data Enable Selector for Bid	SVSNE2	\checkmark	\checkmark	-	$9(-)$

E.4.5 Soft Macro

Function	Block	5.0 V	3.3 V		Description
Cells (I/O)					
BScan TAP Controller	SBCK	\checkmark	\checkmark	-	$392(-)$
BScan Instruction Register (Internal Circuit)	SBM4	\checkmark	\checkmark	-	$46(-)$
BScan Instruction Register	SBM5	\checkmark	\checkmark	-	$140(-)$
BScan Instruction Decoder	SBM6	\checkmark	\vee	-	$24(-)$
BScan Instruction Decoder with NEC Scan	SBMC	\checkmark	\checkmark	-	$37(-)$
BScan Bypass Register	SBS3	\checkmark	\vee	-	$26(-)$

[^0]: OPENCAD and FPBGA are trademarks of NEC Electronics Corporation.
 ModelSim is a registered trademark of Mentor Graphics Corporation.
 Design Compiler is a registered trademark of Synopsys, Inc. in Japan.
 PrimeTime, TetraMAX, and Formality are registered trademarks of Synopsys, Inc. in the United States.
 Verilog, NC-Verilog, Verilog-XL, and Silicon Ensemble are trademarks of Cadence Design Systems, Inc.
 SUN and Solaris are trademarks of SUN Microsystems, Inc.
 VCS is a trademark of Synopsys, Inc.
 HP and HP-UX are trademarks of Hewlett-Packard Company.
 Motif is a trademark of Open Software Foundation, Inc.
 Tuxedo and Conformal are trademarks of Verplex Systems, Inc.

[^1]: To obtain the latest documents when designing, contact an NEC Electronics sales office or distributor.

[^2]: <1> Stop the flip-flop output changing due to spike noise by ensuring that the data is not changed, or by some other method at the spike noise generation timing.
 <2> Modify the test pattern.

